Support HIR wf checking for function signatures
During function type-checking, we normalize any associated types in
the function signature (argument types + return type), and then
create WF obligations for each of the normalized types. The HIR wf code
does not currently support this case, so any errors that we get have
imprecise spans.
This commit extends `ObligationCauseCode::WellFormed` to support
recording a function parameter, allowing us to get the corresponding
HIR type if an error occurs. Function typechecking is modified to
pass this information during signature normalization and WF checking.
The resulting code is fairly verbose, due to the fact that we can
no longer normalize the entire signature with a single function call.
As part of the refactoring, we now perform HIR-based WF checking
for several other 'typed items' (statics, consts, and inherent impls).
As a result, WF and projection errors in a function signature now
have a precise span, which points directly at the responsible type.
If a function signature is constructed via a macro, this will allow
the error message to point at the code 'most responsible' for the error
(e.g. a user-supplied macro argument).
Fix implicit Sized relaxation when attempting to relax other, unsupported trait
Fixes#87199.
Do note that this bug fix causes code like the `ref_arg::<[i32]>(&[5]);` line in the test case in combination with an affected function to no longer compile.
During function type-checking, we normalize any associated types in
the function signature (argument types + return type), and then
create WF obligations for each of the normalized types. The HIR wf code
does not currently support this case, so any errors that we get have
imprecise spans.
This commit extends `ObligationCauseCode::WellFormed` to support
recording a function parameter, allowing us to get the corresponding
HIR type if an error occurs. Function typechecking is modified to
pass this information during signature normalization and WF checking.
The resulting code is fairly verbose, due to the fact that we can
no longer normalize the entire signature with a single function call.
As part of the refactoring, we now perform HIR-based WF checking
for several other 'typed items' (statics, consts, and inherent impls).
As a result, WF and projection errors in a function signature now
have a precise span, which points directly at the responsible type.
If a function signature is constructed via a macro, this will allow
the error message to point at the code 'most responsible' for the error
(e.g. a user-supplied macro argument).
Various diagnostics clean ups/tweaks
* Always point at macros, including derive macros
* Point at non-local items that introduce a trait requirement
* On private associated item, point at definition
* Always point at macros, including derive macros
* Point at non-local items that introduce a trait requirement
* On private associated item, point at definition
Check that const parameters of trait methods have compatible types
This PR fixes#86820. The problem is that this currently passes the type checker:
```rust
trait Tr {
fn foo<const N: u8>(self) -> u8;
}
impl Tr for f32 {
fn foo<const N: bool>(self) -> u8 { 42 }
}
```
i.e. the type checker fails to check whether const parameters in `impl` methods have the same type as the corresponding declaration in the trait. With my changes, I get, for the above code:
```
error[E0053]: method `foo` has an incompatible const parameter type for trait
--> test.rs:6:18
|
6 | fn foo<const N: bool>(self) -> u8 { 42 }
| ^
|
note: the const parameter `N` has type `bool`, but the declaration in trait `Tr::foo` has type `u8`
--> test.rs:2:18
|
2 | fn foo<const N: u8>(self) -> u8;
| ^
error: aborting due to previous error
```
This fixes#86820, where an ICE happens later on because the trait method is declared with a const parameter of type `u8`, but the `impl` uses one of type `usize`:
> `expected int of size 8, but got size 1`
Add initial implementation of HIR-based WF checking for diagnostics
During well-formed checking, we walk through all types 'nested' in
generic arguments. For example, WF-checking `Option<MyStruct<u8>>`
will cause us to check `MyStruct<u8>` and `u8`. However, this is done
on a `rustc_middle::ty::Ty`, which has no span information. As a result,
any errors that occur will have a very general span (e.g. the
definintion of an associated item).
This becomes a problem when macros are involved. In general, an
associated type like `type MyType = Option<MyStruct<u8>>;` may
have completely different spans for each nested type in the HIR. Using
the span of the entire associated item might end up pointing to a macro
invocation, even though a user-provided span is available in one of the
nested types.
This PR adds a framework for HIR-based well formed checking. This check
is only run during error reporting, and is used to obtain a more precise
span for an existing error. This is accomplished by individually
checking each 'nested' type in the HIR for the type, allowing us to
find the most-specific type (and span) that produces a given error.
The majority of the changes are to the error-reporting code. However,
some of the general trait code is modified to pass through more
information.
Since this has no soundness implications, I've implemented a minimal
version to begin with, which can be extended over time. In particular,
this only works for HIR items with a corresponding `DefId` (e.g. it will
not work for WF-checking performed within function bodies).
During well-formed checking, we walk through all types 'nested' in
generic arguments. For example, WF-checking `Option<MyStruct<u8>>`
will cause us to check `MyStruct<u8>` and `u8`. However, this is done
on a `rustc_middle::ty::Ty`, which has no span information. As a result,
any errors that occur will have a very general span (e.g. the
definintion of an associated item).
This becomes a problem when macros are involved. In general, an
associated type like `type MyType = Option<MyStruct<u8>>;` may
have completely different spans for each nested type in the HIR. Using
the span of the entire associated item might end up pointing to a macro
invocation, even though a user-provided span is available in one of the
nested types.
This PR adds a framework for HIR-based well formed checking. This check
is only run during error reporting, and is used to obtain a more precise
span for an existing error. This is accomplished by individually
checking each 'nested' type in the HIR for the type, allowing us to
find the most-specific type (and span) that produces a given error.
The majority of the changes are to the error-reporting code. However,
some of the general trait code is modified to pass through more
information.
Since this has no soundness implications, I've implemented a minimal
version to begin with, which can be extended over time. In particular,
this only works for HIR items with a corresponding `DefId` (e.g. it will
not work for WF-checking performed within function bodies).
TAIT: Infer all inference variables in opaque type substitutions via InferCx
The previous algorithm was correct for the example given in its
documentation, but when the TAIT was declared as a free item
instead of an associated item, the generic parameters were the
wrong ones.
cc `@spastorino`
r? `@nikomatsakis`
Loop over all opaque types instead of looking at just the first one with the same DefId
This exposed a bug in VecMap and is needed for https://github.com/rust-lang/rust/pull/86410 anyway
r? ``@spastorino``
cc ``@nikomatsakis``
The previous algorithm was correct for the example given in its
documentation, but when the TAIT was declared as a free item
instead of an associated item, the generic parameters were the
wrong ones.
Remove refs from Pat slices
Changes `PatKind::Or(&'hir [&'hir Pat<'hir>])` to `PatKind::Or(&'hir [Pat<'hir>])` and others. This is more consistent with `ExprKind`, saves a little memory, and is a little easier to use.
RFC2229: Use the correct place type
Closes https://github.com/rust-lang/rust/issues/87097
The ICE occurred because instead of looking at the type of the place after all the projections are applied, we instead looked at the `base_ty` of the Place to decide whether a discriminant should be read of not. This lead to two issues:
1. the kind of the type is not necessarily `Adt` since we only look at the `base_ty`, it could be instead `Ref` for example
2. if the kind of the type is `Adt` you could still be looking at the wrong variant to make a decision on whether the discriminant should be read or not
r? `@nikomatsakis`
Replace associated item bound vars with placeholders when projecting
Fixes#76407Fixes#76826
Similar, but more limited, to #85499. This allows us to handle things like `for<'a> <T as Trait>::Assoc<'a>` but not `for<'a> <T as Trait<'a>>::Assoc`, unblocking GATs.
r? `@nikomatsakis`
Report an error if resolution of closure call functions failed
This pull request fixes#86238. The current implementation seems to assume that resolution of closure call functions (I'm not sure what the proper term is; I mean `call` of `Fn` etc.) can never fail:
60f1a2fc4b/compiler/rustc_typeck/src/check/callee.rs (L590-L595)
But actually, it can, if the `fn`/`fn_mut`/`fn_once` lang items are not defined, or don't have an associated `call`/`call_mut`/`call_once` function, leading to the ICE described in #86238. I have therefore turned the `span_bug!()` into an error message, which prevents the ICE.
Do not suggest adding a semicolon after `?`
Fixes#87051. I have only modified `report_return_mismatched_types()`, i.e. my changes only affect suggestions to add `;` for return type mismatches, but this never makes sense after `?`, because the function cannot return `()` if `?` is used (it has to return a `Result` or an `Option`), and a semicolon won't help if the expected and actual `Err` types differ, even if the expected one is `()`.
Improves migrations lint for RFC2229
This PR improves the current disjoint capture migration lint by providing more information on why drop order or auto trait implementation for a closure is impacted by the use of the new feature.
The drop order migration lint will now look something like this:
```
error: changes to closure capture in Rust 2021 will affect drop order
--> $DIR/significant_drop.rs:163:21
|
LL | let c = || {
| ^^
...
LL | tuple.0;
| ------- in Rust 2018, closure captures all of `tuple`, but in Rust 2021, it only captures `tuple.0`
...
LL | }
| - in Rust 2018, `tuple` would be dropped here, but in Rust 2021, only `tuple.0` would be dropped here alongside the closure
```
The auto trait migration lint will now look something like this:
```
error: changes to closure capture in Rust 2021 will affect `Send` trait implementation for closure
--> $DIR/auto_traits.rs:14:19
|
LL | thread::spawn(move || unsafe {
| ^^^^^^^^^^^^^^ in Rust 2018, this closure would implement `Send` as `fptr` implements `Send`, but in Rust 2021, this closure would no longer implement `Send` as `fptr.0` does not implement `Send`
...
LL | *fptr.0 = 20;
| ------- in Rust 2018, closure captures all of `fptr`, but in Rust 2021, it only captures `fptr.0`
```
r? `@nikomatsakis`
Closes https://github.com/rust-lang/project-rfc-2229/issues/54
Support forwarding caller location through trait object method call
Since PR #69251, the `#[track_caller]` attribute has been supported on
traits. However, it only has an effect on direct (monomorphized) method
calls. Calling a `#[track_caller]` method on a trait object will *not*
propagate caller location information - instead, `Location::caller()` will
return the location of the method definition.
This PR forwards caller location information when `#[track_caller]` is
present on the method definition in the trait. This is possible because
`#[track_caller]` in this position is 'inherited' by any impls of that
trait, so all implementations will have the same ABI.
This PR does *not* change the behavior in the case where
`#[track_caller]` is present only on the impl of a trait.
While all implementations of the method might have an explicit
`#[track_caller]`, we cannot know this at codegen time, since other
crates may have impls of the trait. Therefore, we keep the current
behavior of not forwarding the caller location, ensuring that all
implementations of the trait will have the correct ABI.
See the modified test for examples of how this works
only check cg defaults wf once instantiated
the previous fixmes here didn't make too much sense as I didn't yet fully understand the code further below.
That code only runs if the predicates using our generic param default are fully concrete after substituting our default, which never happens if our default is generic.
r? `@oli-obk` `@BoxyUwU`