Print -Ztime-passes (and misc stats/logs) on stderr, not stdout.
I've tried not to change anything that looked similar to `rustc --print`, where people might use automation, and/or any "bulk" prints, such as dumping an entire Graphviz (`dot`) graph on stdout.
The reason I want `-Ztime-passes` to be on stderr like debug logging is I can get a complete (and correctly interleaved) view just by looking at stderr, which is merely a convenience when running `rustc`/Cargo directly, but even more important when it's nested in a build script, as Cargo will split the build script output into stdout (named `output`) and `stderr`.
Ensure valid TraitRefs are created for GATs
This fixes `ProjectionTy::trait_ref` to use the correct substs. Places that need all of the substs have been updated to not use `trait_ref`.
r? ````@jackh726````
Implement RFC 2580: Pointer metadata & VTable
RFC: https://github.com/rust-lang/rfcs/pull/2580
~~Before merging this PR:~~
* [x] Wait for the end of the RFC’s [FCP to merge](https://github.com/rust-lang/rfcs/pull/2580#issuecomment-759145278).
* [x] Open a tracking issue: https://github.com/rust-lang/rust/issues/81513
* [x] Update `#[unstable]` attributes in the PR with the tracking issue number
----
This PR extends the language with a new lang item for the `Pointee` trait which is special-cased in trait resolution to implement it for all types. Even in generic contexts, parameters can be assumed to implement it without a corresponding bound.
For this I mostly imitated what the compiler was already doing for the `DiscriminantKind` trait. I’m very unfamiliar with compiler internals, so careful review is appreciated.
This PR also extends the standard library with new unstable APIs in `core::ptr` and `std::ptr`:
```rust
pub trait Pointee {
/// One of `()`, `usize`, or `DynMetadata<dyn SomeTrait>`
type Metadata: Copy + Send + Sync + Ord + Hash + Unpin;
}
pub trait Thin = Pointee<Metadata = ()>;
pub const fn metadata<T: ?Sized>(ptr: *const T) -> <T as Pointee>::Metadata {}
pub const fn from_raw_parts<T: ?Sized>(*const (), <T as Pointee>::Metadata) -> *const T {}
pub const fn from_raw_parts_mut<T: ?Sized>(*mut (),<T as Pointee>::Metadata) -> *mut T {}
impl<T: ?Sized> NonNull<T> {
pub const fn from_raw_parts(NonNull<()>, <T as Pointee>::Metadata) -> NonNull<T> {}
/// Convenience for `(ptr.cast(), metadata(ptr))`
pub const fn to_raw_parts(self) -> (NonNull<()>, <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *const T {
pub const fn to_raw_parts(self) -> (*const (), <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *mut T {
pub const fn to_raw_parts(self) -> (*mut (), <T as Pointee>::Metadata) {}
}
/// `<dyn SomeTrait as Pointee>::Metadata == DynMetadata<dyn SomeTrait>`
pub struct DynMetadata<Dyn: ?Sized> {
// Private pointer to vtable
}
impl<Dyn: ?Sized> DynMetadata<Dyn> {
pub fn size_of(self) -> usize {}
pub fn align_of(self) -> usize {}
pub fn layout(self) -> crate::alloc::Layout {}
}
unsafe impl<Dyn: ?Sized> Send for DynMetadata<Dyn> {}
unsafe impl<Dyn: ?Sized> Sync for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Debug for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Unpin for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Copy for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Clone for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Eq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialEq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Ord for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialOrd for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Hash for DynMetadata<Dyn> {}
```
API differences from the RFC, in areas noted as unresolved questions in the RFC:
* Module-level functions instead of associated `from_raw_parts` functions on `*const T` and `*mut T`, following the precedent of `null`, `slice_from_raw_parts`, etc.
* Added `to_raw_parts`
Only store a LocalDefId in some HIR nodes
Some HIR nodes are guaranteed to be HIR owners: Item, TraitItem, ImplItem, ForeignItem and MacroDef.
As a consequence, we do not need to store the `HirId`'s `local_id`, and we can directly store a `LocalDefId`.
This allows to avoid a bit of the dance with `tcx.hir().local_def_id` and `tcx.hir().local_def_id_to_hir_id` mappings.
avoid full-slicing slices
If we already have a slice, there is no need to get another full-range slice from that, just use the original.
clippy::redundant_slicing
const_generics: Fix incorrect ty::ParamEnv::empty() usage
Fixes#80561
Not sure if I should keep the `debug!(..)`s or not but its the second time I've needed them so they sure seem useful lol
cc ``@lcnr``
r? ``@oli-obk``
const_generics: Dont evaluate array length const when handling errors
Fixes#79518Fixes#78246
cc ````@lcnr````
This was ICE'ing because we dont pass in the correct ``ParamEnv`` which meant that there was no ``Self: Foo`` predicate to make ``Self::Assoc`` well formed which caused an ICE when trying to normalize ``Self::Assoc`` in the mir interpreter
r? ````@varkor````
Suggest to create a new `const` item if the `fn` in the array is a `const fn`
Fixes#73734. If the `fn` in the array repeat expression is a `const fn`, suggest creating a new `const` item. On nightly, suggest creating an inline `const` block. This PR also removes the `suggest_const_in_array_repeat_expressions` as it is no longer necessary.
Example:
```rust
fn main() {
// Should not compile but hint to create a new const item (stable) or an inline const block (nightly)
let strings: [String; 5] = [String::new(); 5];
println!("{:?}", strings);
}
```
Gives this error:
```
error[E0277]: the trait bound `std::string::String: std::marker::Copy` is not satisfied
--> $DIR/const-fn-in-vec.rs:3:32
|
2 | let strings: [String; 5] = [String::new(); 5];
| ^^^^^^^^^^^^^^^^^^ the trait `std::marker::Copy` is not implemented for `String`
|
= note: the `Copy` trait is required because the repeated element will be copied
```
With this change, this is the error message:
```
error[E0277]: the trait bound `String: Copy` is not satisfied
--> $DIR/const-fn-in-vec.rs:3:32
|
LL | let strings: [String; 5] = [String::new(); 5];
| ^^^^^^^^^^^^^^^^^^ the trait `Copy` is not implemented for `String`
|
= help: moving the function call to a new `const` item will resolve the error
```
Check the result cache before the DepGraph when ensuring queries
Split out of https://github.com/rust-lang/rust/pull/70951
Calling `ensure` on already forced queries is a common operation.
Looking at the results cache first is faster than checking the DepGraph for a green node.
Try fast_reject::simplify_type in coherence before doing full check
This is a reattempt at landing #69010 (by `@jonas-schievink).` The change adds a fast path for coherence checking to see if there's no way for types to unify since full coherence checking can be somewhat expensive.
This has big effects on code generated by the [`windows`](https://github.com/microsoft/windows-rs) which in some cases spends as much as 20% of compilation time in the `specialization_graph_of` query. In local benchmarks this took a compilation that previously took ~500 seconds down to ~380 seconds.
This is surely not going to make a difference on much smaller crates, so the question is whether it will have a negative impact. #69010 was closed because some of the perf suite crates did show small regressions.
Additional discussion of this issue is happening [here](https://rust-lang.zulipchat.com/#narrow/stream/247081-t-compiler.2Fperformance/topic/windows-rs.20perf).