When a trait is used without specifying the implementation (e.g. calling
a non-member associated function without fully-qualified syntax) and
there are multiple implementations available, use a placeholder comment
for the implementation type in the suggestion instead of picking a
random implementation.
Example:
```
fn main() {
let _ = Default::default();
}
```
Previous output:
```
error[E0790]: cannot call associated function on trait without specifying the corresponding `impl` type
--> test.rs:2:13
|
2 | let _ = Default::default();
| ^^^^^^^^^^^^^^^^ cannot call associated function of trait
|
help: use a fully-qualified path to a specific available implementation (273 found)
|
2 | let _ = <FileTimes as Default>::default();
| +++++++++++++ +
```
New output:
```
error[E0790]: cannot call associated function on trait without specifying the corresponding `impl` type
--> test.rs:2:13
|
2 | let _ = Default::default();
| ^^^^^^^^^^^^^^^^ cannot call associated function of trait
|
help: use a fully-qualified path to a specific available implementation (273 found)
|
2 | let _ = </* self type */ as Default>::default();
| +++++++++++++++++++ +
```
Account for sealed traits in privacy and trait bound errors
On trait bound errors caused by super-traits, identify if the super-trait is publicly accessibly and if not, explain "sealed traits".
```
error[E0277]: the trait bound `S: Hidden` is not satisfied
--> $DIR/sealed-trait-local.rs:17:20
|
LL | impl a::Sealed for S {}
| ^ the trait `Hidden` is not implemented for `S`
|
note: required by a bound in `Sealed`
--> $DIR/sealed-trait-local.rs:3:23
|
LL | pub trait Sealed: self:🅱️:Hidden {
| ^^^^^^^^^^^^^^^ required by this bound in `Sealed`
= note: `Sealed` is a "sealed trait", because to implement it you also need to implelement `a:🅱️:Hidden`, which is not accessible; this is usually done to force you to use one of the provided types that already implement it
```
Deduplicate privacy errors that point to the same path segment even if their deduplication span are different.
When encountering a path that is not reachable due to privacy constraints path segments other than the last, keep metadata for the last path segment's `Res` in order to look for alternative import paths for that item to suggest. If there are none, be explicit that the item is not accessible.
```
error[E0603]: module `b` is private
--> $DIR/re-exported-trait.rs:11:9
|
LL | impl a:🅱️:Trait for S {}
| ^ private module
|
note: the module `b` is defined here
--> $DIR/re-exported-trait.rs:5:5
|
LL | mod b {
| ^^^^^
help: consider importing this trait through its public re-export instead
|
LL | impl a::Trait for S {}
| ~~~~~~~~
```
```
error[E0603]: module `b` is private
--> $DIR/private-trait.rs:8:9
|
LL | impl a:🅱️:Hidden for S {}
| ^ ------ trait `b` is not publicly reachable
| |
| private module
|
note: the module `b` is defined here
--> $DIR/private-trait.rs:2:5
|
LL | mod b {
| ^^^^^
```
When implementing a public trait with a private super-trait, we now emit
a note that the missing bound is not going to be able to be satisfied,
and we explain the concept of a sealed trait.
Add a fully fledged `Clause` type, rename old `Clause` to `ClauseKind`
Does two basic things before I put up a more delicate set of PRs (along the lines of #112714, but hopefully much cleaner) that migrate existing usages of `ty::Predicate` to `ty::Clause` (`predicates_of`/`item_bounds`/`ParamEnv::caller_bounds`).
1. Rename `Clause` to `ClauseKind`, so it's parallel with `PredicateKind`.
2. Add a new `Clause` type which is parallel to `Predicate`.
* This type exposes `Clause::kind(self) -> Binder<'tcx, ClauseKind<'tcx>>` which is parallel to `Predicate::kind` 😸
The new `Clause` type essentially acts as a newtype wrapper around `Predicate` that asserts that it is specifically a `PredicateKind::Clause`. Turns out from experimentation[^1] that this is not negative performance-wise, which is wonderful, since this a much simpler design than something that requires encoding the discriminant into the alignment bits of a predicate kind, or something else like that...
r? ``@lcnr`` or ``@oli-obk``
[^1]: https://github.com/rust-lang/rust/pull/112714#issuecomment-1595653910
The only regression is one ambiguity in the new trait solver, having to
do with two param-env candidates that may apply. I think this is fine,
since the error message already kinda sucks.
Add `implement_via_object` to `rustc_deny_explicit_impl` to control object candidate assembly
Some built-in traits are special, since they are used to prove facts about the program that are important for later phases of compilation such as codegen and CTFE. For example, the `Unsize` trait is used to assert to the compiler that we are able to unsize a type into another type. It doesn't have any methods because it doesn't actually *instruct* the compiler how to do this unsizing, but this is later used (alongside an exhaustive match of combinations of unsizeable types) during codegen to generate unsize coercion code.
Due to this, these built-in traits are incompatible with the type erasure provided by object types. For example, the existence of `dyn Unsize<T>` does not mean that the compiler is able to unsize `Box<dyn Unsize<T>>` into `Box<T>`, since `Unsize` is a *witness* to the fact that a type can be unsized, and it doesn't actually encode that unsizing operation in its vtable as mentioned above.
The old trait solver gets around this fact by having complex control flow that never considers object bounds for certain built-in traits:
2f896da247/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs (L61-L132)
However, candidate assembly in the new solver is much more lovely, and I'd hate to add this list of opt-out cases into the new solver. Instead of maintaining this complex and hard-coded control flow, instead we can make this a property of the trait via a built-in attribute. We already have such a build attribute that's applied to every single trait that we care about: `rustc_deny_explicit_impl`. This PR adds `implement_via_object` as a meta-item to that attribute that allows us to opt a trait out of object-bound candidate assembly as well.
r? `@lcnr`
Don't consider TAIT normalizable to hidden ty if it would result in impossible item bounds
See test for example where we shouldn't consider it possible to alias-relate a TAIT and hidden type.
r? `@lcnr`
Don't ICE on bound var in `reject_fn_ptr_impls`
We may try to use an impl like `impl<T: FnPtr> PartialEq {}` to satisfy a predicate like `for<T> T: PartialEq` -- don't ICE in that case.
Fixes#112735
Continue folding in query normalizer on weak aliases
Fixes#112752Fixes#112731 (same root cause, so didn't make a test for it)
fixes#112776
r? ```@oli-obk```
Add `AliasKind::Weak` for type aliases.
`type Foo<T: Debug> = Bar<T>;` does not check `T: Debug` at use sites of `Foo<NotDebug>`, because in contrast to a
```rust
trait Identity {
type Identity;
}
impl<T: Debug> Identity for T {
type Identity = T;
}
<NotDebug as Identity>::Identity
```
type aliases do not exist in the type system, but are expanded to their aliased type immediately when going from HIR to the type layer.
Similarly:
* a private type alias for a public type is a completely fine thing, even though it makes it a bit hard to write out complex times sometimes
* rustdoc expands the type alias, even though often times users use them for documentation purposes
* diagnostics show the expanded type, which is confusing if the user wrote a type alias and the diagnostic talks about another type that they don't know about.
For type alias impl trait, these issues do not actually apply in most cases, but sometimes you have a type alias impl trait like `type Foo<T: Debug> = (impl Debug, Bar<T>);`, which only really checks it for `impl Debug`, but by accident prevents `Bar<T>` from only being instantiated after proving `T: Debug`. This PR makes sure that we always check these bounds explicitly and don't rely on an implementation accident.
To not break all the type aliases out there, we only use it when the type alias contains an opaque type. We can decide to do this for all type aliases over an edition.
Or we can later extend this to more types if we figure out the back-compat concerns with suddenly checking such bounds.
As a side effect, easily allows fixing https://github.com/rust-lang/rust/issues/108617, which I did.
fixes https://github.com/rust-lang/rust/issues/108617
Make assumption functions in new solver take `Binder<'tcx, Clause<'tcx>>`
We just use an if-let to match on an optional clause at all the places where we transition from `Predicate` -> `Clause`, but I assume that when things like item-bounds and param-env start to only store `Clause`s then those can just be trivially dropped.
r? ``@lcnr``
Opportunistically resolve regions in new solver
Use `opportunistic_resolve_var` during canonicalization to collapse some regions.
We have to start using `CanonicalVarValues::is_identity_modulo_regions`. We also have to modify that function to consider responses like `['static, ^0, '^1, ^2]` to be an "identity" response, since because we opportunistically resolve regions, there's no longer a 1:1 mapping between canonical var values and bound var indices in the response...
There's one nasty side-effect -- one test (`tests/ui/dyn-star/param-env-infer.rs`) starts to ICE because the certainty goes from `Yes` to `Maybe(Overflow)`... Not exactly sure why, though? Putting this up for discussion/investigation.
r? ```@lcnr```
Improve docs/clean up negative overlap functions
Clean up some functions in ways that should not affect behavior, change some names to be clearer (`negative_impl` and `implicit_negative` are not really clear imo), and add some documentation examples.
r? `@spastorino`
Collect VTable stats & add `-Zprint-vtable-sizes`
This is a bit hacky/buggy, but I'm not entirely sure how to fix it, so I want to ask reviewers for help...
To try this, use either of those:
- `cargo clean && RUSTFLAGS="-Zprint-vtable-sizes" cargo +toolchain b`
- `cargo clean && cargo rustc +toolchain -Zprint-vtable-sizes`
- `rustc +toolchain -Zprint-vtable-sizes ./file.rs`
Safe Transmute: Enable handling references
This patch enables support for references in Safe Transmute, by generating nested obligations during trait selection. Specifically, when we call `confirm_transmutability_candidate(...)`, we now recursively traverse the `rustc_transmute::Answer` tree and create obligations for all the `Answer` variants, some of which include multiple nested `Answer`s.
- Create `Answer` type that is not just a type alias of `Result`
- Remove a usage of `map_layouts` to make the code easier to read
- Don't hide errors related to Unknown Layout when computing transmutability
Add `-Ztrait-solver=next-coherence`
Flag that conditionally uses the trait solver *only* during coherence, for more testing and/or eventual partial-migration onto the trait solver (in the medium- to long-term).
* This still uses the selection context in some of the coherence methods I think, so it's not "complete". Putting this up for review and/or for further work in-tree.
* I probably need to spend a bit more time making sure that we don't sneakily create any other infcx's during coherence that also need the new solver enabled.
r? `@lcnr`
Fall back to bidirectional normalizes-to if no subst-relate candidate in alias-relate goal
Sometimes we get into the case where the choice of normalizes-to branch in alias-relate are both valid, but we cannot make a choice of which one to take because they are different -- either returning equivalent but permuted region constraints, or equivalent opaque type definitions but differing modulo normalization.
In this case, we can make progress by considering a fourth candidate where we compute both normalizes-to branches together and canonicalize that as a response. This is essentially the AND intersection of both normalizes-to branches. In an ideal world, we'd be returning something more like the OR intersection of both branches, but we have no way of representing that either for regions (maybe eventually) or opaques (don't see that happening ever).
This is incomplete, so like the subst-relate fallback it's only considered outside of coherence. But it doesn't seem like a dramatic strengthening of inference or anything, and is useful for helping opaque type inference succeed when the hidden type is a projection.
## Example
Consider the goal - `AliasRelate(Tait, <[i32; 32] as IntoIterator>::IntoIter)`.
We have three ways of currently solving this goal:
1. SubstRelate - fails because we can't directly equate the substs of different alias kinds.
2. NormalizesToRhs - `Tait normalizes-to <[i32; 32] as IntoIterator>::IntoIter`
* Ends up infering opaque definition - `Tait := <[i32; 32] as IntoIterator>::IntoIter`
3. NormalizesToLhs - `<[i32; 32] as IntoIterator>::IntoIter normalizes-to Tait`
* Find impl candidate, substitute the associated type - `std::array::IntoIter<i32, 32>`
* Equate `std::array::IntoIter<i32, 32>` and `Tait`
* Ends up infering opaque definition - `Tait := std::array::IntoIter<i32, 32>`
The problem here is that 2 and 3 are essentially both valid, since we have aliases that normalize on both sides, but due to lazy norm, they end up inferring different opaque type definitions that are only equal *after* normalizing them further.
---
r? `@lcnr`
Merge method, type and const object safety checks
cc `@spastorino` and `@compiler-errors` on the first commit. I believe it to be correct, as the field is only `Some` for assoc types, so just checking the field without checking the assoc kind to be `Type` is fine.
The second commit avoids going through all associated items thrice and just goes over all of them once, running the object safety checks per assoc item kind.
Normalize in infcx instead of globally for `Option::as_deref` suggestion
fixes#112293
The projection may contain inference variables. These inference variables are local to the local inference context. Using `tcx.normalize_erasing_regions` doesn't work here because this method is global and does not have access to the inference context. It's therefore unable to deal with the inference variables. We normalize in the local inference context instead, which knowns about the inference variables.
The test looks a little different than the issue example, I made it more minimal and verified that it still ICEs on nightly.
Also contains a drive-by fix to properly compare the types.
r? `@compiler-errors`
The projection may contain inference variables. These inference
variables are local to the local inference context. Using
`tcx.normalize_erasing_regions` doesn't work here because this method is
global and does not have access to the inference context. It's therefore
unable to deal with the inference variables. We normalize in the local
inference context instead, which knowns about the inference variables.
suggest `Option::as_deref(_mut)` on type mismatch in option combinator if it passes typeck
Fixes#106342.
This adds a suggestion to call `.as_deref()` (or `.as_deref_mut()` resp.) if typeck fails due to a type mismatch in the function passed to an `Option` combinator such as `.map()` or `.and_then()`.
For example:
```rs
fn foo(_: &str) {}
Some(String::new()).map(foo);
```
The `.map()` method requires its argument to satisfy `F: FnOnce(String)`, but it received `fn(&str)`, which won't pass. However, placing a `.as_deref()` before the `.map()` call fixes this since `&str == &<String as Deref>::Target`
refactor and cleanup the leak check, add it to new solver
ended up being a bit more involved than I wanted but is hopefully still easy enough to review as a single PR, can split it into separate ones otherwise.
this can be reviewed commit by commit:
a473d55cdb9284aa2b01282d1b529a2a4d26547b 31a686646534ca006d906ec757ece4e771d6f973 949039c107852a5e36361c08b62821a0613656f5 242917bf5170d9a723c6c8e23e9d9d0c2fa8dc9d ed2b25a7aa28be3184be9e3022c2796a30eaad87 are all pretty straightforward.
03dd83b4c3f4ff27558f5c8ab859bd9f83db1d04 makes it easier to refactor coherence in a later commit, see the commit description, cc `@oli-obk`
4fe311d807a77b6270f384e41689bf5d58f46aec I don't quite remember what we wanted to test here, this definitely doesn't test that the occurs check doesn't cause incorrect errors in coherence, also cc `@oli-obk` here. I may end up writing a new test for this myself later.
5c200d88a91b75bd0875b973150655bd581ef97a is the main refactor of the leak check, changing it to take the `outer_universe` instead of getting it from a snapshot. Using a snapshot requires us to be in a probe which we aren't in the new solver, it also just feels dirty as snapshots don't really have anything to do with universes.
with all of this cfc230d54188d9c7ed867a9a0d1f51be77b485f9 is now kind of trivial.
r? `@nikomatsakis`
`EarlyBinder::new` -> `EarlyBinder::bind`
for consistency with `Binder::bind`. it may make sense to also add `EarlyBinder::dummy` in places where we know that no parameters exist, but I left that out of this PR.
r? `@jackh726` `@kylematsuda`
Each of `{D,Subd}iagnosticMessage::{Str,Eager}` has a comment:
```
// FIXME(davidtwco): can a `Cow<'static, str>` be used here?
```
This commit answers that question in the affirmative. It's not the most
compelling change ever, but it might be worth merging.
This requires changing the `impl<'a> From<&'a str>` impls to `impl
From<&'static str>`, which involves a bunch of knock-on changes that
require/result in call sites being a little more precise about exactly
what kind of string they use to create errors, and not just `&str`. This
will result in fewer unnecessary allocations, though this will not have
any notable perf effects given that these are error paths.
Note that I was lazy within Clippy, using `to_string` in a few places to
preserve the existing string imprecision. I could have used `impl
Into<{D,Subd}iagnosticMessage>` in various places as is done in the
compiler, but that would have required changes to *many* call sites
(mostly changing `&format("...")` to `format!("...")`) which didn't seem
worthwhile.
Enable MatchBranchSimplification
This pass is one of the small number of benefits from `-Zmir-opt-level=3` that has motivated rustc_codegen_cranelift to use it:
19ed0aade6/compiler/rustc_codegen_cranelift/build_system/build_sysroot.rs (L244-L246)
Cranelift's motivation for this is _runtime_ performance improvements in debug builds. Lifting this pass all the way to `-Zmir-opt-level=1` seems to come without significant perf overhead, so that's what I'm suggesting here.
Add warn-by-default lint when local binding shadows exported glob re-export item
This PR introduces a warn-by-default rustc lint for when a local binding (a use statement, or a type declaration) produces a name which shadows an exported glob re-export item, causing the name from the exported glob re-export to be hidden (see #111336).
### Unresolved Questions
- [x] ~~Is this approach correct? While it passes the UI tests, I'm not entirely convinced it is correct.~~ Seems to be ok now.
- [x] ~~What should the lint be called / how should it be worded? I don't like calling `use x::*;` or `struct Foo;` a "local binding" but they are `NameBinding`s internally if I'm not mistaken.~~ ~~The lint is called `local_binding_shadows_glob_reexport` for now, unless a better name is suggested.~~ `hidden_glob_reexports`.
Fixes#111336.
- Change `Condition` to not contain `Answer`s but instead just contain other
`Condition`s directly.
- Also improve error reporting for `DstHasStricterAlignment`
Use `Option::is_some_and` and `Result::is_ok_and` in the compiler
`.is_some_and(..)`/`.is_ok_and(..)` replace `.map_or(false, ..)` and `.map(..).unwrap_or(false)`, making the code more readable.
This PR is a sibling of https://github.com/rust-lang/rust/pull/111873#issuecomment-1561316515
- Only create dst -> src obligation if Dst is mutable
- Add some long comments to explain parts of the transmutability code that were
unclear to me when reading
- Update/add tests
- Make sure that the most specific Reason is the one that bubbles up when we
are folding over the `Answer` tree. `Reason::DstIsBitIncompatible` is the
least specific, so that should be used only when there isn't anything else
available.
- Small fixes where we used the wrong Reason variant.
- Tiny cleanups
This patch updates the `Answer` type from `rustc_transmute` so that it just a
type alias to `Result`. This makes it so that the standard methods for `Result`
can be used to process the `Answer` tree, including being able to make use of
the `?` operator on `Answer`s.
Also, remove some unused functions
This patch enables support for references in Safe Transmute, by generating
nested obligations during trait selection. Specifically, when we call
`confirm_transmutability_candidate(...)`, we now recursively traverse the
`rustc_transmute::Answer` tree and create obligations for all the `Answer`
variants, some of which include multiple nested `Answer`s.
Also, to handle recursive types, enable support for coinduction for the Safe
Transmute trait (`BikeshedIntrinsicFrom`) by adding the `#[rustc_coinduction]`
annotation.
Also fix some small logic issues when reducing the `or` and `and` combinations
in `rustc_transmute`, so that we don't end up with additional redundant
`Answer`s in the tree.
Co-authored-by: Jack Wrenn <jack@wrenn.fyi>
Remove return type sized check hack from hir typeck
Remove a bunch of special-cased suggestions when someone returns `-> dyn Trait` that checks for type equality, etc.
This was a pretty complex piece of code that also relied on a hack in hir typeck (see changes to `compiler/rustc_hir_typeck/src/check.rs`), and I'm not convinced that it's necessary to maintain, when all we really need to tell the user is that they should return `-> impl Trait` or `-> Box<dyn Trait>`, depending on their specific use-case.
This is necessary because we may need to move the "return type is sized" check from hir typeck to wfcheck, which does not have access to typeck results. This is a prerequisite for that, and I'm fairly confident that the diagnostics "regressions" here are not a big deal.
Deal with unnormalized projections when structurally resolving types with new solver
1. Normalize types in `structurally_resolved_type` when the new solver is enabled
2. Normalize built-in autoderef targets in `Autoderef` when the new solver is enabled
3. Normalize-erasing-regions in `resolve_type` in writeback
This is motivated by the UI test provided, which currently fails with:
```
error[E0609]: no field `x` on type `<usize as SliceIndex<[Foo]>>::Output`
--> <source>:9:11
|
9 | xs[0].x = 1;
| ^
```
I'm pretty happy with the approach in (1.) and (2.) and think we'll inevitably need something like this in the long-term, but (3.) seems like a hack to me. It's a *lot* of work to add tons of new calls to every user of these typeck results though (mir build, late lints, etc). Happy to discuss further.
r? `@lcnr`
Give better error when collecting into `&[T]`
The detection of slice reference of `{integral}` in `rustc_on_unimplemented` is hacky, but a proper solution requires changing `FmtPrinter` to add a parameter to print integers as `{integral}` and I didn't want to change it just for `rustc_on_unimplemented`. I can do that if requested, though.
I'm open to better wording; this is the best I could come up with.
do not allow inference in `predicate_must_hold` (alternative approach)
See the FCP description for more info, but tl;dr is that we should not return `EvaluatedToOkModuloRegions` if an obligation may hold only with some choice of inference vars being constrained.
Attempts to solve this in the approach laid out by lcnr here: https://github.com/rust-lang/rust/pull/109558#discussion_r1147318134, rather than by eagerly replacing infer vars with placeholders which is a bit too restrictive.
r? `@ghost`
Exclude inherent projections from some alias type `match`es
Updating (hopefully) all remaining `match`es which I overlooked to update when adding `AliasKind::Inherent` in #109410.
Fixes#111399.
Sadly the regression test is a clippy test instead of a rustc one as I don't know of another way to test that a trait bound like `Ty::InhProj: Trait` doesn't cause a crash without reaching a cycle error first (this is getting old ^^').
`@rustbot` label F-inherent_associated_types
r? `@compiler-errors`