Error messages cleaned in librustc/middle
Error messages cleaned in libsyntax
Error messages cleaned in libsyntax more agressively
Error messages cleaned in librustc more aggressively
Fixed affected tests
Fixed other failing tests
Last failing tests fixed
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
For `use` statements, this means disallowing qualifiers when in functions and
disallowing `priv` outside of functions.
For `extern mod` statements, this means disallowing everything everywhere. It
may have been envisioned for `pub extern mod foo` to be a thing, but it
currently doesn't do anything (resolve doesn't pick it up), so better to err on
the side of forwards-compatibility and forbid it entirely for now.
Closes#9957
For `use` statements, this means disallowing qualifiers when in functions and
disallowing `priv` outside of functions.
For `extern mod` statements, this means disallowing everything everywhere. It
may have been envisioned for `pub extern mod foo` to be a thing, but it
currently doesn't do anything (resolve doesn't pick it up), so better to err on
the side of forwards-compatibility and forbid it entirely for now.
Closes#9957
For the benefit of the pretty printer we want to keep track of how
string literals in the ast were originally represented in the source
code.
This commit changes parser functions so they don't extract strings from
the token stream without at least also returning what style of string
literal it was. This is stored in the resulting ast node for string
literals, obviously, for the package id in `extern mod = r"package id"`
view items, for the inline asm in `asm!()` invocations.
For `asm!()`'s other arguments or for `extern "Rust" fn()` items, I just
the style of string, because it seemed disproportionally cumbersome to
thread that information through the string processing that happens with
those string literals, given the limited advantage raw string literals
would provide in these positions.
The other syntax extensions don't seem to store passed string literals
in the ast, so they also discard the style of strings they parse.
It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html
This is actually almost a problem, because those were my poster-child
macros for "here's how to implement a capturing macro." Following this
change, there will be no macros that use capturing; this will probably
make life unpleasant for the first person that wants to implement a
capturing macro. I should probably create a dummy_capturing macro,
just to show how it works.
The pipes compiler produced data types that encoded efficient and safe
bounded message passing protocols between two endpoints. It was also
capable of producing unbounded protocols.
It was useful research but was arguably done before its proper time.
I am removing it for the following reasons:
* In practice we used it only for producing the `oneshot` and `stream`
unbounded protocols and all communication in Rust use those.
* The interface between the proto! macro and the standard library
has a large surface area and was difficult to maintain through
language and library changes.
* It is now written in an old dialect of Rust and generates code
which would likely be considered non-idiomatic.
* Both the compiler and the runtime are difficult to understand,
and likewise the relationship between the generated code and
the library is hard to understand. Debugging is difficult.
* The new scheduler implements `stream` and `oneshot` by hand
in a way that will be significantly easier to maintain.
This shouldn't be taken as an indication that 'channel protocols'
for Rust are not worth pursuing again in the future.
`crate => Crate`
`local => Local`
`blk => Block`
`crate_num => CrateNum`
`crate_cfg => CrateConfig`
Also, Crate and Local are not wrapped in spanned<T> anymore.
I removed the `static-method-test.rs` test because it was heavily based
on `BaseIter` and there are plenty of other more complex uses of static
methods anyway.
This fixes the strange random crashes in compile-fail tests.
This reverts commit 96cd61ad034cc9e88ab6a7845c3480dbc1ea62f3.
Conflicts:
src/librustc/driver/driver.rs
src/libstd/str.rs
src/libsyntax/ext/quote.rs
This almost removes the StringRef wrapper, since all strings are
Equiv-alent now. Removes a lot of `/* bad */ copy *`'s, and converts
several things to be &'static str (the lint table and the intrinsics
table).
There are many instances of .to_managed(), unfortunately.