A quick rundown:
- added `file::{readdir, stat, mkdir, rmdir}`
- Added access-constrained versions of `FileStream`; `FileReader` and `FileWriter` respectively
- big rework in `uv::file` .. most actions are by-val-self methods on `FsRequest`; `FileDescriptor` has gone the way of the dinosaurs
- playing nice w/ homing IO (I just copied ecr's work, hehe), etc
- added `FileInfo` trait, with an impl for `Path`
- wrapper for file-specific actions, with the file path always implied by self's value
- has the means to create `FileReader` & `FileWriter` (this isn't exposed in the top-level free function API)
- has "safe" wrappers for `stat()` that won't throw in the event of non-existence/error (in this case, I mean `is_file` and `exists`)
- actions should fail if done on non-regular-files, as appropriate
- added `DirectoryInfo` trait, with an impl for `Path`
- pretty much ditto above, but for directories
- added `readdir` (!!) to iterate over entries in a dir as a `~[Path]` (this was *brutal* to get working)
...<del>and lots of other stuff</del>not really. Do your worst!
FormatMessageA may return non-ascii message,
which is encoded as system code page, not utf8.
This may cause `assert!(is_utf8(v))` failure on
some non-English machines.
This patch replaces it with FormatMessageW,
which returns utf-16 message.
Fixes `make check-stage2-std` failure on my machine. :)
The trait will keep the `Iterator` naming, but a more concise module
name makes using the free functions less verbose. The module will define
iterables in addition to iterators, as it deals with iteration in
general.
Some extern blobs are duplicated without "stdcall" abi,
since Win64 does not use any calling convention.
(Giving any abi to them causes llvm producing wrong bytecode.)
.with_c_str() is a replacement for the old .as_c_str(), to avoid
unnecessary boilerplate.
Replace all usages of .to_c_str().with_ref() with .with_c_str().
This PR fixes#7235 and #3371, which removes trailing nulls from `str` types. Instead, it replaces the creation of c strings with a new type, `std::c_str::CString`, which wraps a malloced byte array, and respects:
* No interior nulls
* Ends with a trailing null
Mostly optimizing TLS accesses to bring local heap allocation performance
closer to that of oldsched. It's not completely at parity but removing the
branches involved in supporting oldsched and optimizing pthread_get/setspecific
to instead use our dedicated TCB slot will probably make up for it.
- Made naming schemes consistent between Option, Result and Either
- Changed Options Add implementation to work like the maybe monad (return None if any of the inputs is None)
- Removed duplicate Option::get and renamed all related functions to use the term `unwrap` instead
When strings lose their trailing null, this pattern will become dangerous:
let foo = "bar";
let foo_ptr: *u8 = &foo[0];
Instead we should use c_strs to handle this correctly.
If the TLS key is 0-sized, then the linux linker is apparently smart enough to
put everything at the same pointer. OSX on the other hand, will reserve some
space for all of them. To get around this, the TLS key now actuall consumes
space to ensure that it gets a unique pointer
cc #6004 and #3273
This is a rewrite of TLS to get towards not requiring `@` when using task local storage. Most of the rewrite is straightforward, although there are two caveats:
1. Changing `local_set` to not require `@` is blocked on #7673
2. The code in `local_pop` is some of the most unsafe code I've written. A second set of eyes should definitely scrutinize it...
The public-facing interface currently hasn't changed, although it will have to change because `local_data::get` cannot return `Option<T>`, nor can it return `Option<&T>` (the lifetime isn't known). This will have to be changed to be given a closure which yield `&T` (or as an Option). I didn't do this part of the api rewrite in this pull request as I figured that it could wait until when `@` is fully removed.
This also doesn't deal with the issue of using something other than functions as keys, but I'm looking into using static slices (as mentioned in the issues).
r? @graydon, @nikomatsakis, @pcwalton, or @catamorphism
Sorry this is so huge, but it's been accumulating for about a month. There's lots of stuff here, mostly oriented toward enabling multithreaded scheduling and improving compatibility between the old and new runtimes. Adds task pinning so that we can create the 'platform thread' in servo.
[Here](e1555f9b56/src/libstd/rt/mod.rs (L201)) is the current runtime setup code.
About half of this has already been reviewed.
Basically, one may just do:
MemoryMap::new(16, ~[
MapExecutable,
MapReadable,
MapWritable
])
And executable+readable+writable chunk of at least 16 bytes size will be
allocated and freed with the result of `MemoryMap::new`.
Continuation of #7430.
I haven't removed the `map` method, since the replacement `v.iter().transform(f).collect::<~[SomeType]>()` is a little ridiculous at the moment.
* stop using an atomic counter, this has a significant cost and
valgrind will already catch these leaks
* remove the extra layer of function calls
* remove the assert of non-null in free, freeing null is well defined
but throwing a failure from free will not be
* stop initializing the `prev`/`next` pointers
* abort on out-of-memory, failing won't necessarily work
Instead of determining paths from the path tag, we iterate through
modules' children recursively in the metadata. This will allow for
lazy external module resolution.
I removed the `static-method-test.rs` test because it was heavily based
on `BaseIter` and there are plenty of other more complex uses of static
methods anyway.
Moves all the remaining functions that could reasonably be methods to be methods, except for some FFI ones (which I believe @erickt is working on, possibly) and `each_split_within`, since I'm not really sure the details of it (I believe @kimundi wrote the current implementation, so maybe he could convert it to an external iterator method on `StrSlice`, e.g. `word_wrap_iter(&self) -> WordWrapIterator<'self>`, where `WordWrapIterator` impls `Iterator<&'self str>`. It probably won't be too hard, since it's already a state machine.)
This also cleans up the comparison impls for the string types, except I'm not sure how the lang items `eq_str` and `eq_str_uniq` need to be handled, so they (`eq_slice` and `eq`) remain stand-alone functions.