Switch to LLD as default linker for loongarch64-unknown-none*
The [LLD already supports LoongArch](6084ee7420), it's time to switch to LLD as default linker for `loongarch64-unknown-none*`.
Warn on inductive cycle in coherence leading to impls being considered not overlapping
This PR implements a `coinductive_overlap_in_coherence` lint (#114040), which warns users against cases where two impls are considered **not** to overlap during coherence due to an inductive cycle disproving one of the predicates after unifying the two impls.
Cases where this lint fires will become an overlap error if we ever move to coinduction, so I'd like to make this a warning to avoid having more crates take advantage of this behavior in the mean time. Also, since the new trait solver treats inductive cycles as ambiguity, not an error, this is a blocker for landing the new trait solver in coherence.
Couple of global state and driver refactors
* Remove some unused global mutable state
* Remove a couple of unnecessary queries (both driver and `TyCtxt` queries)
* Remove an unnecessary use of `FxIndexMap`
add a csky-unknown-linux-gnuabiv2 target
This is the rustc side changes to support csky based Linux target(`csky-unknown-linux-gnuabiv2`).
Tier 3 policy:
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I pledge to do my best maintaining it.
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
This `csky` section is the arch name and the `unknown-linux` section is the same as other linux target, and `gnuabiv2` is from the cross-compile toolchain of `gcc`
> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
I think the explanation in platform support doc is enough to make this aspect clear.
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
It's using open source tools only.
> The target must not introduce license incompatibilities.
No new license
> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
Understood.
> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
There are no new dependencies/features required.
> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
As previously said it's using open source tools only.
> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
There are no such terms present/
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
I'm not the reviewer here.
> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
I'm not the reviewer here.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
It supports for std
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
I have added the documentation, and I think it's clear.
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
Understood.
> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
Understood.
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
I believe I didn't break any other target.
> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I think there are no such problems in this PR.
Remove unnecessary FIXME
Found this while browsing rustc, I traced it back to https://github.com/rust-lang/rust/pull/27893 when MIR first introduced, some time passed since then and I think this FIXME is no longer necessary.
fixed *const [type error] does not implement the Copy trait
Removes "error: arguments for inline assembly must be copyable" when moving an unknown type
Fixes: #113788
Make Const more useful in smir
Since https://github.com/rust-lang/rust/pull/114587 is merged, we can make use of what we built and make Const more useful by making it not `Opaque`
r? `@spastorino`
Select obligations before processing wf obligation in `compare_method_predicate_entailment`
We need to select obligations before processing the WF obligation for the `IMPLIED_BOUNDS_ENTAILMENT` lint, since it skips over type variables.
Fixes#114783
r? `@jackh726`
TAITs do not constrain generic params
Fixes#108425
Not sure if I should rework those two failing tests. I guess `tests/ui/type-alias-impl-trait/coherence.rs` could just have the type parameter removed from it? IDK what `tests/ui/type-alias-impl-trait/coherence_generalization.rs` is even testing, though.
r? `@aliemjay`
cc `@lcnr` `@oli-obk` (when he's back from 🌴)
coverage: Store BCB counter info externally, not directly in the BCB graph
When deciding how to instrument the underlying MIR for coverage, the `InstrumentCoverage` pass builds a simplified “Basic Counter Block” graph, and then allocates coverage counters/expressions to various nodes/edges in the BCB graph as necessary. Those counters/expressions are then injected into the function's MIR.
The awkward thing here is that the code for doing this needs `&mut` access to the graph, in order to associate coverage info with individual nodes, even though it isn't making any structural changes to the graph itself. That makes it harder to understand and modify the instrumentation code.
In addition, the graph alone can't hold all the information that is needed. There ends up being an extra vector of “intermediate expressions” that needs to be passed around separately anyway.
---
This PR simplifies things by instead storing all of that temporary coverage information in a number of side-tables inside `CoverageCounters`.
This makes it easier to see all of the information produced by the make-counters step, and how it is used by the inject-into-mir step.
---
Looking at the combined changes is possible, but I recommend reviewing the commits individually, because the big changes are mostly independent of each other (despite being conceptually related).
Extract a create_wrapper_function for use in allocator shim writing
This deduplicates some logic and makes it easier to follow what wrappers are produced. In the future it may allow moving the code to determine which wrappers to create to cg_ssa.
All of them are not exported from rustc_interface and used only during
global_ctxt(). Inlining them makes it easier to follow the order of
queries and slightly reduces line count.
Also consider `mem::transmute` with the `invalid_reference_casting` lint
This PR extend the `invalid_reference_casting` lint with regard to the `std::mem::transmute` function.
```
error: casting `&T` to `&mut T` is undefined behavior, even if the reference is unused, consider instead using an `UnsafeCell`
--> $DIR/reference_casting.rs:27:16
|
LL | let _num = &mut *std::mem::transmute::<_, *mut i32>(&num);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
*I encourage anyone reviewing this PR to do so [without whitespaces](https://github.blog/2011-10-21-github-secrets/#whitespace).*
rustc: Move `features` from `Session` to `GlobalCtxt`
Removes one more piece of mutable state.
Follow up to #114622.
The rule I used for passing feature in function signatures:
- if a crate already depends on `rustc_middle`, then `Session` is replaced with `TyCtxt`
- otherwise session and features are passed as a pair `sess: &Session, features: &Features`
The code in `rustc_lint` is ultimately used for implementing a trait from `rustc_expand`, so it also doesn't use tcx despite the dependency on `rustc_middle`.
normalize in `trait_ref_is_knowable` in new solver
fixes https://github.com/rust-lang/trait-system-refactor-initiative/issues/51
Alternatively we could avoid normalizing the self type and do this at the end of the `assemble_candidates_via_self_ty` stack by splitting candidates into:
- applicable without normalizing self type
- applicable for aliases, even if they can be normalized
- applicable for stuff which cannot get normalized further
I don't think this would have any significant benefits and it also seems non-trivial to avoid normalizing only the self type in `trait_ref_is_knowable`.
r? `@compiler-errors`
Storing coverage counter information in `CoverageCounters` has a few advantages
over storing it directly inside BCB graph nodes:
- The graph doesn't need to be mutable when making the counters, making it
easier to see that the graph itself is not modified during this step.
- All of the counter data is clearly visible in one place.
- It becomes possible to use a representation that doesn't correspond 1:1 to
graph nodes, e.g. storing all the edge counters in a single hashmap instead of
several.
remove builtin `Copy` and `Clone` impl for float and int infer
it's only change is whether `{integer}: Copy` is ambiguous, this has the following properties
- these goals get proven earlier, potentially resulting in slightly better perf
- it causes inconsistent behavior and ICE if there do not exist impls for all integers, causing issues when using `#[no_core]`
- it means `Clone` has user-facing differences from other traits from `core` with the new solver because it can potentially guide inference there
- it's just very sus™ to have a builtin impl which applies during type inference but not afterwards