rustc: move the check_loop pass earlier.
This pass is purely AST based, and by running it earlier we emit more
useful error messages, e.g. type inference fails in the case of
`let r = break;` with few constraints on `r`, but it's more useful to be told that
the `break` is outside the loop (rather than a type error) when it is.
Closes#13292.
Fix#13266.
There is a little bit of acrobatics in the definition of `crate_paths`
to avoid calling `clone()` on the dylib/rlib unless we actually are
going to need them.
The other oddity is that I have replaced the `root_ident: Option<&str>`
parameter with a `root: &Option<CratePaths>`, which may surprise one
who was expecting to see something like: `root: Option<&CratePaths>`.
I went with the approach here because I could not come up with code for
the alternative that was acceptable to the borrow checker.
Add way to print notes with just file:linenum prefix (preserving
integration with source lookup for e.g. vi and emacs) but don't repeat
the other span info.
This pass is purely AST based, and by running it earlier we emit more
useful error messages, e.g. type inference fails in the case of `let r =
break;` with few constraints on `r`, but its more useful to be told that
the `break` is outside a loop (rather than a type error) when it is.
Closes#13292.
A variety of stuff here, mostly aimed at making `make install` work correctly with `--libdir` and `--mandir`. `make install` again goes through `install.sh`.
These are superfluous now that we have fixed rvalue lifetimes and Deref.
I'd also like to kill off `get` and `set`, but that'll be a large change so I want to make sure that we actually want to do that first.
The pretty printer constitues an enormous amount of code, there's no reason for
it to be generic. This just least to a huge amount of metadata which isn't
necessary. Instead, this change migrates the pretty printer to using a trait
object instead.
Closes#12985
This takes the time for `rustc libstd/lib.rs -Z ast-json-noexpand >
file.json` from 9.0s to 3.5s (~0.5s spent parsing etc.) and `-Z
ast-json` from 11s to 5s (~1.5s spent parsing and expanding).
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
The `~str` type is not long for this world as it will be superseded by the
soon-to-come DST changes for the language. The new type will be
`~Str`, and matching over the allocation will no longer be supported.
Matching on `&str` will continue to work, in both a pre and post DST world.
The `-g` flag does not take an argument anymore while the argument to `--debuginfo` becomes mandatory. This change makes it possible again to run the compiler like this:
`rustc -g ./file.rs`
This did not work before because `./file.rs` was misinterpreted as the argument to `-g`. In order to get limited debuginfo, one now has to use `--debuginfo=1`.
* `Ord` inherits from `Eq`
* `TotalOrd` inherits from `TotalEq`
* `TotalOrd` inherits from `Ord`
* `TotalEq` inherits from `Eq`
This is a partial implementation of #12517.
If #[feature(default_type_parameters)] is enabled for a crate, then
deriving(Hash) will expand with Hash<W: Writer> instead of Hash<SipState> so
more hash algorithms can be used.
This leverages the new hashing framework and hashmap implementation to provide a
much speedier hashing algorithm for node ids and def ids. The hash algorithm
used is currentl FNV hashing, but it's quite easy to swap out.
I originally implemented hashing as the identity function, but this actually
ended up in slowing down rustc compiling libstd from 8s to 13s. I would suspect
that this is a result of a large number of collisions.
With FNV hashing, we get these timings (compiling with --no-trans, in seconds):
| | before | after |
|-----------|---------:|--------:|
| libstd | 8.324 | 6.703 |
| stdtest | 47.674 | 46.857 |
| libsyntax | 9.918 | 8.400 |
This commit alters the diagnostic emission machinery to be focused around a
Writer for emitting errors. This allows it to not hard-code emission of errors
to stderr (useful for other applications).
This new SVH is used to uniquely identify all crates as a snapshot in time of
their ABI/API/publicly reachable state. This current calculation is just a hash
of the entire crate's AST. This is obviously incorrect, but it is currently the
reality for today.
This change threads through the new Svh structure which originates from crate
dependencies. The concept of crate id hash is preserved to provide efficient
matching on filenames for crate loading. The inspected hash once crate metadata
is opened has been changed to use the new Svh.
The goal of this hash is to identify when upstream crates have changed but
downstream crates have not been recompiled. This will prevent the def-id drift
problem where upstream crates were recompiled, thereby changing their metadata,
but downstream crates were not recompiled.
In the future this hash can be expanded to exclude contents of the AST like doc
comments, but limitations in the compiler prevent this change from being made at
this time.
Closes#10207
- For each *mutable* static item, check that the **type**:
- cannot own any value whose type has a dtor
- cannot own any values whose type is an owned pointer
- For each *immutable* static item, check that the **value**:
- does not contain any ~ or box expressions
(including ~[1, 2, 3] sort of things)
- does not contain a struct literal or call to an enum
variant / struct constructor where
- the type of the struct/enum has a dtor
These two containers are indeed collections, so their place is in
libcollections, not in libstd. There will always be a hash map as part of the
standard distribution of Rust, but by moving it out of the standard library it
makes libstd that much more portable to more platforms and environments.
This conveniently also removes the stuttering of 'std::hashmap::HashMap',
although 'collections::HashMap' is only one character shorter.
This "bubble up an error" macro was originally named if_ok! in order to get it
landed, but after the fact it was discovered that this name is not exactly
desirable.
The name `if_ok!` isn't immediately clear that is has much to do with error
handling, and it doesn't look fantastic in all contexts (if if_ok!(...) {}). In
general, the agreed opinion about `if_ok!` is that is came in as subpar.
The name `try!` is more invocative of error handling, it's shorter by 2 letters,
and it looks fitting in almost all circumstances. One concern about the word
`try!` is that it's too invocative of exceptions, but the belief is that this
will be overcome with documentation and examples.
Close#12037
This is mostly useful for working on rustc, when one is unfamiliar with the
AST a particular construct will produce. It's a -Z flag as it's very much for
debugging.
Closes#10485
This patch replaces all `crate` usage with `krate` before introducing the
new keyword. This ensures that after introducing the keyword, there
won't be any compilation errors.
krate might not be the most expressive substitution for crate but it's a
very close abbreviation for it. `module` was already used in several
places already.
Error messages cleaned in librustc/middle
Error messages cleaned in libsyntax
Error messages cleaned in libsyntax more agressively
Error messages cleaned in librustc more aggressively
Fixed affected tests
Fixed other failing tests
Last failing tests fixed
This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all options
stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the directory of
the crate file.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all
options stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the current
directory of the process.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
They all have to go into a single module at the moment unfortunately.
Ideally, the logging macros would live in std::logging, condition! would
live in std::condition, format! in std::fmt, etc. However, this
introduces cyclic dependencies between those modules and the macros they
use which the current expansion system can't deal with. We may be able
to get around this by changing the expansion phase to a two-pass system
but that's for a later PR.
Closes#2247
cc #11763
By default, the compiler and libraries are all still built with rpaths, but this
can be opted out of with --disable-rpath to ./configure or --no-rpath to rustc.
Closes#5219
By default, the compiler and libraries are all still built with rpaths, but this
can be opted out of with --disable-rpath to ./configure or --no-rpath to rustc.
cc #5219
They all have to go into a single module at the moment unfortunately.
Ideally, the logging macros would live in std::logging, condition! would
live in std::condition, format! in std::fmt, etc. However, this
introduces cyclic dependencies between those modules and the macros they
use which the current expansion system can't deal with. We may be able
to get around this by changing the expansion phase to a two-pass system
but that's for a later PR.
Closes#2247
cc #11763
A mutable and immutable borrow place some restrictions on what you can
with the variable until the borrow ends. This commit attempts to convey
to the user what those restrictions are. Also, if the original borrow is
a mutable borrow, the error message has been changed (more specifically,
i. "cannot borrow `x` as immutable because it is also borrowed as
mutable" and ii. "cannot borrow `x` as mutable more than once" have
been changed to "cannot borrow `x` because it is already borrowed as
mutable").
In addition, this adds a (custom) span note to communicate where the
original borrow ends.
```rust
fn main() {
match true {
true => {
let mut x = 1;
let y = &x;
let z = &mut x;
}
false => ()
}
}
test.rs:6:21: 6:27 error: cannot borrow `x` as mutable because it is already borrowed as immutable
test.rs:6 let z = &mut x;
^~~~~~
test.rs:5:21: 5:23 note: previous borrow of `x` occurs here; the immutable borrow prevents subsequent moves or mutable borrows of `x` until the borrow ends
test.rs:5 let y = &x;
^~
test.rs:7:10: 7:10 note: previous borrow ends here
test.rs:3 true => {
test.rs:4 let mut x = 1;
test.rs:5 let y = &x;
test.rs:6 let z = &mut x;
test.rs:7 }
^
```
```rust
fn foo3(t0: &mut &mut int) {
let t1 = &mut *t0;
let p: &int = &**t0;
}
fn main() {}
test.rs:3:19: 3:24 error: cannot borrow `**t0` because it is already borrowed as mutable
test.rs:3 let p: &int = &**t0;
^~~~~
test.rs:2:14: 2:22 note: previous borrow of `**t0` as mutable occurs here; the mutable borrow prevents subsequent moves, borrows, or modification of `**t0` until the borrow ends
test.rs:2 let t1 = &mut *t0;
^~~~~~~~
test.rs:4:2: 4:2 note: previous borrow ends here
test.rs:1 fn foo3(t0: &mut &mut int) {
test.rs:2 let t1 = &mut *t0;
test.rs:3 let p: &int = &**t0;
test.rs:4 }
^
```
For the "previous borrow ends here" note, if the span is too long (has too many lines), then only the first and last lines are printed, and the middle is replaced with dot dot dot:
```rust
fn foo3(t0: &mut &mut int) {
let t1 = &mut *t0;
let p: &int = &**t0;
}
fn main() {}
test.rs:3:19: 3:24 error: cannot borrow `**t0` because it is already borrowed as mutable
test.rs:3 let p: &int = &**t0;
^~~~~
test.rs:2:14: 2:22 note: previous borrow of `**t0` as mutable occurs here; the mutable borrow prevents subsequent moves, borrows, or modification of `**t0` until the borrow ends
test.rs:2 let t1 = &mut *t0;
^~~~~~~~
test.rs:7:2: 7:2 note: previous borrow ends here
test.rs:1 fn foo3(t0: &mut &mut int) {
...
test.rs:7 }
^
```
(Sidenote: the `span_end_note` currently also has issue #11715)
A mutable and immutable borrow place some restrictions on what you can
with the variable until the borrow ends. This commit attempts to convey
to the user what those restrictions are. Also, if the original borrow is
a mutable borrow, the error message has been changed (more specifically,
i. "cannot borrow `x` as immutable because it is also borrowed as
mutable" and ii. "cannot borrow `x` as mutable more than once" have
been changed to "cannot borrow `x` because it is already borrowed as
mutable").
In addition, this adds a (custom) span note to communicate where the
original borrow ends.
To build for the cortex-M series ARM processors LLC needs to be told to build for the thumb instruction set. There are two ways to do this, either with the triple "thumb\*-\*-\*" or with -march=thumb (which just overrides the triple anyway). I chose the first way.
The following will fail because the local cc doesn't know what to do with -mthumb.
````
rustc test.rs --lib --target thumb-linux-eab
error: linking with `cc` failed: exit code: 1
note: cc: error: unrecognized command line option ‘-mthumb’
````
Changing the linker works as expected.
````
rustc test.rs --lib --target thumb-linux-eabi --linker arm-none-eabi-gcc
````
Ideally I'd have the triple thumb-none-eabi, but adding a new OS looks like much more work (and I'm not familiar enough with what it does to know if it is needed).
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
cc #11119
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
This is a first pass on support for procedural macros that aren't hardcoded into libsyntax. It is **not yet ready to merge** but I've opened a PR to have a chance to discuss some open questions and implementation issues.
Example
=======
Here's a silly example showing off the basics:
my_synext.rs
```rust
#[feature(managed_boxes, globs, macro_registrar, macro_rules)];
extern mod syntax;
use syntax::ast::{Name, token_tree};
use syntax::codemap::Span;
use syntax::ext::base::*;
use syntax::parse::token;
#[macro_export]
macro_rules! exported_macro (() => (2))
#[macro_registrar]
pub fn macro_registrar(register: |Name, SyntaxExtension|) {
register(token::intern(&"make_a_1"),
NormalTT(@SyntaxExpanderTT {
expander: SyntaxExpanderTTExpanderWithoutContext(expand_make_a_1),
span: None,
} as @SyntaxExpanderTTTrait,
None));
}
pub fn expand_make_a_1(cx: &mut ExtCtxt, sp: Span, tts: &[token_tree]) -> MacResult {
if !tts.is_empty() {
cx.span_fatal(sp, "make_a_1 takes no arguments");
}
MRExpr(quote_expr!(cx, 1i))
}
```
main.rs:
```rust
#[feature(phase)];
#[phase(syntax)]
extern mod my_synext;
fn main() {
assert_eq!(1, make_a_1!());
assert_eq!(2, exported_macro!());
}
```
Overview
=======
Crates that contain syntax extensions need to define a function with the following signature and annotation:
```rust
#[macro_registrar]
pub fn registrar(register: |ast::Name, ext::base::SyntaxExtension|) { ... }
```
that should call the `register` closure with each extension it defines. `macro_rules!` style macros can be tagged with `#[macro_export]` to be exported from the crate as well.
Crates that wish to use externally loadable syntax extensions load them by adding the `#[phase(syntax)]` attribute to an `extern mod`. All extensions registered by the specified crate are loaded with the same scoping rules as `macro_rules!` macros. If you want to use a crate both for syntax extensions and normal linkage, you can use `#[phase(syntax, link)]`.
Open questions
===========
* ~~Does the `macro_crate` syntax make sense? It wraps an entire `extern mod` declaration which looks a bit weird but is nice in the sense that the crate lookup logic can be identical between normal external crates and external macro crates. If the `extern mod` syntax, changes, this will get it for free, etc.~~ Changed to a `phase` attribute.
* ~~Is the magic name `macro_crate_registration` the right way to handle extension registration? It could alternatively be handled by a function annotated with `#[macro_registration]` I guess.~~ Switched to an attribute.
* The crate loading logic lives inside of librustc, which means that the syntax extension infrastructure can't directly access it. I've worked around this by passing a `CrateLoader` trait object from the driver to libsyntax that can call back into the crate loading logic. It should be possible to pull things apart enough that this isn't necessary anymore, but it will be an enormous refactoring project. I think we'll need to create a couple of new libraries: libsynext libmetadata/ty and libmiddle.
* Item decorator extensions can be loaded but the `deriving` decorator itself can't be extended so you'd need to do e.g. `#[deriving_MyTrait] #[deriving(Clone)]` instead of `#[deriving(MyTrait, Clone)]`. Is this something worth bothering with for now?
Remaining work
===========
- [x] ~~There is not yet support for rustdoc downloading and compiling referenced macro crates as it does for other referenced crates. This shouldn't be too hard I think.~~
- [x] ~~This is not testable at stage1 and sketchily testable at stages above that. The stage *n* rustc links against the stage *n-1* libsyntax and librustc. Unfortunately, crates in the test/auxiliary directory link against the stage *n* libstd, libextra, libsyntax, etc. This causes macro crates to fail to properly dynamically link into rustc since names end up being mangled slightly differently. In addition, when rustc is actually installed onto a system, there are actually do copies of libsyntax, libstd, etc: the ones that user code links against and a separate set from the previous stage that rustc itself uses. By this point in the bootstrap process, the two library versions *should probably* be binary compatible, but it doesn't seem like a sure thing. Fixing this is apparently hard, but necessary to properly cross compile as well and is being tracked in #11145.~~ The offending tests are ignored during `check-stage1-rpass` and `check-stage1-cfail`. When we get a snapshot that has this commit, I'll look into how feasible it'll be to get them working on stage1.
- [x] ~~`macro_rules!` style macros aren't being exported. Now that the crate loading infrastructure is there, this should just require serializing the AST of the macros into the crate metadata and yanking them out again, but I'm not very familiar with that part of the compiler.~~
- [x] ~~The `macro_crate_registration` function isn't type-checked when it's loaded. I poked around in the `csearch` infrastructure a bit but didn't find any super obvious ways of checking the type of an item with a certain name. Fixing this may also eliminate the need to `#[no_mangle]` the registration function.~~ Now that the registration function is identified by an attribute, typechecking this will be like typechecking other annotated functions.
- [x] ~~The dynamic libraries that are loaded are never unloaded. It shouldn't require too much work to tie the lifetime of the `DynamicLibrary` object to the `MapChain` that its extensions are loaded into.~~
- [x] ~~The compiler segfaults sometimes when loading external crates. The `DynamicLibrary` reference and code objects from that library are both put into the same hash table. When the table drops, due to the random ordering the library sometimes drops before the objects do. Once #11228 lands it'll be easy to fix this.~~
If a reexport comes from a non-public module, then the documentation for the
reexport will be inlined into the module that exports it, but if the reexport is
targeted at a public type (like the prelude), then it is not inlined but rather
hyperlinked.
Right now the --crate-id and related flags are all process *after* the entire
crate is parsed. This is less than desirable when used with makefiles because it
means that just to learn the output name of the crate you have to parse the
entire crate (unnecessary).
This commit changes the behavior to lift the handling of these flags much sooner
in the compilation process. This allows us to not have to parse the entire crate
and only have to worry about parsing the crate attributes themselves. The
related methods have all been updated to take an array of attributes rather than
a crate.
Additionally, this ceases duplication of the "what output are we producing"
logic in order to correctly handle things in the case of --test.
Finally, this adds tests for all of this functionality to ensure that it does
not regress.
Right now the --crate-id and related flags are all process *after* the entire
crate is parsed. This is less than desirable when used with makefiles because it
means that just to learn the output name of the crate you have to parse the
entire crate (unnecessary).
This commit changes the behavior to lift the handling of these flags much sooner
in the compilation process. This allows us to not have to parse the entire crate
and only have to worry about parsing the crate attributes themselves. The
related methods have all been updated to take an array of attributes rather than
a crate.
Additionally, this ceases duplication of the "what output are we producing"
logic in order to correctly handle things in the case of --test.
Finally, this adds tests for all of this functionality to ensure that it does
not regress.
We were previously reading metadata via `ar p`, but as learned from rustdoc
awhile back, spawning a process to do something is pretty slow. Turns out LLVM
has an Archive class to read archives, but it cannot write archives.
This commits adds bindings to the read-only version of the LLVM archive class
(with a new type that only has a read() method), and then it uses this class
when reading the metadata out of rlibs. When you put this in tandem of not
compressing the metadata, reading the metadata is 4x faster than it used to be
The timings I got for reading metadata from the respective libraries was:
libstd-04ff901e-0.9-pre.dylib => 100ms
libstd-04ff901e-0.9-pre.rlib => 23ms
librustuv-7945354c-0.9-pre.dylib => 4ms
librustuv-7945354c-0.9-pre.rlib => 1ms
librustc-5b94a16f-0.9-pre.dylib => 87ms
librustc-5b94a16f-0.9-pre.rlib => 35ms
libextra-a6ebb16f-0.9-pre.dylib => 63ms
libextra-a6ebb16f-0.9-pre.rlib => 15ms
libsyntax-2e4c0458-0.9-pre.dylib => 86ms
libsyntax-2e4c0458-0.9-pre.rlib => 22ms
In order to always take advantage of these faster metadata read-times, I sort
the files in filesearch based on whether they have an rlib extension or not
(prefer all rlib files first).
Overall, this halved the compile time for a `fn main() {}` crate from 0.185s to
0.095s on my system (when preferring dynamic linking). Reading metadata is still
the slowest pass of the compiler at 0.035s, but it's getting pretty close to
linking at 0.021s! The next best optimization is to just not copy the metadata
from LLVM because that's the most expensive part of reading metadata right now.
By performing this logic very late in the build process, it ended up leading to
bugs like those found in #10973 where certain stages of the build process
expected a particular output format which didn't end up being the case. In order
to fix this, the build output generation is moved very early in the build
process to the absolute first thing in phase 2.
Closes#10973
If it's a trait method, this checks the stability attribute of the
method inside the trait definition. Otherwise, it checks the method
implementation itself.
By performing this logic very late in the build process, it ended up leading to
bugs like those found in #10973 where certain stages of the build process
expected a particular output format which didn't end up being the case. In order
to fix this, the build output generation is moved very early in the build
process to the absolute first thing in phase 2.
Closes#10973
When performing LTO, the rust compiler has an opportunity to completely strip
all landing pads in all dependent libraries. I've modified the LTO pass to
recognize the -Z no-landing-pads option when also running an LTO pass to flag
everything in LLVM as nothrow. I've verified that this prevents any and all
invoke instructions from being emitted.
I believe that this is one of our best options for moving forward with
accomodating use-cases where unwinding doesn't really make sense. This will
allow libraries to be built with landing pads by default but allow usage of them
in contexts where landing pads aren't necessary.
When --dep-info is given, rustc will write out a `$input_base.d` file in the
output directory that contains Makefile compatible dependency information for
use with tools like make and ninja.
When performing LTO, the rust compiler has an opportunity to completely strip
all landing pads in all dependent libraries. I've modified the LTO pass to
recognize the -Z no-landing-pads option when also running an LTO pass to flag
everything in LLVM as nothrow. I've verified that this prevents any and all
invoke instructions from being emitted.
I believe that this is one of our best options for moving forward with
accomodating use-cases where unwinding doesn't really make sense. This will
allow libraries to be built with landing pads by default but allow usage of them
in contexts where landing pads aren't necessary.
cc #10780
This replaces the link meta attributes with a pkgid attribute and uses a hash
of this as the crate hash. This makes the crate hash computable by things
other than the Rust compiler. It also switches the hash function ot SHA1 since
that is much more likely to be available in shell, Python, etc than SipHash.
Fixes#10188, #8523.
This commit implements LTO for rust leveraging LLVM's passes. What this means
is:
* When compiling an rlib, in addition to insdering foo.o into the archive, also
insert foo.bc (the LLVM bytecode) of the optimized module.
* When the compiler detects the -Z lto option, it will attempt to perform LTO on
a staticlib or binary output. The compiler will emit an error if a dylib or
rlib output is being generated.
* The actual act of performing LTO is as follows:
1. Force all upstream libraries to have an rlib version available.
2. Load the bytecode of each upstream library from the rlib.
3. Link all this bytecode into the current LLVM module (just using llvm
apis)
4. Run an internalization pass which internalizes all symbols except those
found reachable for the local crate of compilation.
5. Run the LLVM LTO pass manager over this entire module
6a. If assembling an archive, then add all upstream rlibs into the output
archive. This ignores all of the object/bitcode/metadata files rust
generated and placed inside the rlibs.
6b. If linking a binary, create copies of all upstream rlibs, remove the
rust-generated object-file, and then link everything as usual.
As I have explained in #10741, this process is excruciatingly slow, so this is
*not* turned on by default, and it is also why I have decided to hide it behind
a -Z flag for now. The good news is that the binary sizes are about as small as
they can be as a result of LTO, so it's definitely working.
Closes#10741Closes#10740
Right now whenever an rlib file is linked against, all of the metadata from the
rlib is pulled in to the final staticlib or binary. The reason for this is that
the metadata is currently stored in a section of the object file. Note that this
is intentional for dynamic libraries in order to distribute metadata bundled
with static libraries.
This commit alters the situation for rlib libraries to instead store the
metadata in a separate file in the archive. In doing so, when the archive is
passed to the linker, none of the metadata will get pulled into the result
executable. Furthermore, the metadata file is skipped when assembling rlibs into
an archive.
The snag in this implementation comes with multiple output formats. When
generating a dylib, the metadata needs to be in the object file, but when
generating an rlib this needs to be separate. In order to accomplish this, the
metadata variable is inserted into an entirely separate LLVM Module which is
then codegen'd into a different location (foo.metadata.o). This is then linked
into dynamic libraries and silently ignored for rlib files.
While changing how metadata is inserted into archives, I have also stopped
compressing metadata when inserted into rlib files. We have wanted to stop
compressing metadata, but the sections it creates in object file sections are
apparently too large. Thankfully if it's just an arbitrary file it doesn't
matter how large it is.
I have seen massive reductions in executable sizes, as well as staticlib output
sizes (to confirm that this is all working).
Last LLVM update seems to have fixed whatever prevented LLVM integrated assembler from generating correct unwind tables on Windows. This PR switches Windows builds to use internal assembler by default.
Compilation via external assembler can still be requested via the newly added `-Z no-integrated-as` option.
Closes#8809
The main one removed is rust_upcall_reset_stack_limit (continuation of #10156),
and this also removes the upcall_trace function. The was hidden behind a
`-Z trace` flag, but if you attempt to use this now you'll get a linker error
because there is no implementation of the 'upcall_trace' function. Due to this
no longer working, I decided to remove it entirely from the compiler (I'm also a
little unsure on what it did in the first place).
LLVM's JIT has been updated numerous times, and we haven't been tracking it at
all. The existing LLVM glue code no longer compiles, and the JIT isn't used for
anything currently.
This also rebases out the FixedStackSegment support which we have added to LLVM.
None of this is still in use by the compiler, and there's no need to keep this
functionality around inside of LLVM.
This is needed to unblock #10708 (where we're tripping an LLVM assertion).
This reverts commit c54427ddfb.
Leave the #[ignores] in that were added to rustpkg tests.
Conflicts:
src/librustc/driver/driver.rs
src/librustc/metadata/creader.rs
This is inspired by a mystifying linker failure when using `pkg-config` to
generate the linker args: `pkg-config` produces output that ends in a
space, thus resulting in an empty linker argument.
Also added some updates to the concerning error messages that helped
spotting this bug.
This commit implements the support necessary for generating both intermediate
and result static rust libraries. This is an implementation of my thoughts in
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html.
When compiling a library, we still retain the "lib" option, although now there
are "rlib", "staticlib", and "dylib" as options for crate_type (and these are
stackable). The idea of "lib" is to generate the "compiler default" instead of
having too choose (although all are interchangeable). For now I have left the
"complier default" to be a dynamic library for size reasons.
Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an
rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a
dynamic object. I chose this for size reasons, but also because you're probably
not going to be embedding the rustc compiler anywhere any time soon.
Other than the options outlined above, there are a few defaults/preferences that
are now opinionated in the compiler:
* If both a .dylib and .rlib are found for a rust library, the compiler will
prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option
* If generating a "lib", the compiler will generate a dynamic library. This is
overridable by explicitly saying what flavor you'd like (rlib, staticlib,
dylib).
* If no options are passed to the command line, and no crate_type is found in
the destination crate, then an executable is generated
With this change, you can successfully build a rust program with 0 dynamic
dependencies on rust libraries. There is still a dynamic dependency on
librustrt, but I plan on removing that in a subsequent commit.
This change includes no tests just yet. Our current testing
infrastructure/harnesses aren't very amenable to doing flavorful things with
linking, so I'm planning on adding a new mode of testing which I believe belongs
as a separate commit.
Closes#552
### Rationale
There is no reason to support more than 2³² nodes or names at this moment, as compiling something that big (even without considering the quadratic space usage of some analysis passes) would take at least **64GB**.
Meanwhile, some can't (or barely can) compile rustc because it requires almost **1.5GB**.
### Potential problems
Can someone confirm this doesn't affect metadata (de)serialization? I can't tell myself, I know nothing about it.
### Results
Some structures have a size reduction of 25% to 50%: [before](https://gist.github.com/luqmana/3a82a51fa9c86d9191fa) - [after](https://gist.github.com/eddyb/5a75f8973d3d8018afd3).
Sadly, there isn't a massive change in the memory used for compiling stage2 librustc (it doesn't go over **1.4GB** as [before](http://huonw.github.io/isrustfastyet/mem/), but I can barely see the difference).
However, my own testcase (previously peaking at **1.6GB** in typeck) shows a reduction of **200**-**400MB**.
Now the privacy pass returns enough information that other passes do not need to duplicate the visibility rules, and the missing_doc implementation is more consistent with other lint checks.
Previously, the `exported_items` set created by the privacy pass was
incomplete. Specifically, it did not include items that had been defined
at a private path but then `pub use`d at a public path. This commit
finds all crate exports during the privacy pass. Consequently, some code
in the reachable pass and in rustdoc is no longer necessary. This commit
then removes the separate `MissingDocLintVisitor` lint pass, opting to
check missing_doc lint in the same pass as the other lint checkers using
the visibility result computed by the privacy pass.
Fixes#9777.
As we start to move runtime components into the crate map, it's becoming harder
and harder to start the runtime from a C function as rust is embedded in another
application. Right now if you compile a rust crate as a dynamic library which is
then linked to another application, when using std::rt::start there are no I/O
local services, even though rustuv was linked against and requested. The reason
for this is that there is no top level crate map available specifying where to
find libuv I/O.
This option is not meant to be used regularly, but rather whenever compiling a
final library crate and linking it into another application. This lifts the
requirement that to get a crate map you must have the final destination be an
executable.
These two attributes are no longer useful now that Rust has decided to leave
segmented stacks behind. It is assumed that the rust task's stack is always
large enough to make an FFI call (due to the stack being very large).
There's always the case of stack overflow, however, to consider. This does not
change the behavior of stack overflow in Rust. This is still normally triggered
by the __morestack function and aborts the whole process.
C stack overflow will continue to corrupt the stack, however (as it did before
this commit as well). The future improvement of a guard page at the end of every
rust stack is still unimplemented and is intended to be the mechanism through
which we attempt to detect C stack overflow.
Closes#8822Closes#10155
As we start to move runtime components into the crate map, it's becoming harder
and harder to start the runtime from a C function as rust is embedded in another
application. Right now if you compile a rust crate as a dynamic library which is
then linked to another application, when using std::rt::start there are no I/O
local services, even though rustuv was linked against and requested. The reason
for this is that there is no top level crate map available specifying where to
find libuv I/O.
This option is not meant to be used regularly, but rather whenever compiling a
final library crate and linking it into another application. This lifts the
requirement that to get a crate map you must have the final destination be an
executable.
This adds an other ABI option which allows a custom selection over the target
architecture and OS. The only current candidate for this change is that kernel32
on win32 uses stdcall, but on win64 it uses the cdecl calling convention.
Otherwise everywhere else this is defined as using the Cdecl calling convention.
cc #10049Closes#8774
This adds an other ABI option which allows a custom selection over the target
architecture and OS. The only current candidate for this change is that kernel32
on win32 uses stdcall, but on win64 it uses the cdecl calling convention.
Otherwise everywhere else this is defined as using the Cdecl calling convention.
cc #10049Closes#8774
This renames to_str_ascii to as_str_ascii and makes it non-copying,
which is possible now that strings no longer have a hidden extra
byte/null terminator.
Fixes#6120.
This fleshes out the io::file module a fair bit more, adding all of the functionality that I can think of that we would want. Some questions about the representation which I'm curious about:
* I modified `FileStat` to be a little less platform-agnostic, but it's still fairly platform-specific. I don't want to hide information that we have, but I don't want to depend on this information being available. One possible route is to have an `extra` field which has all this os-dependent stuff which is clearly documented as it should be avoided.
* Does it make sense for directory functions to be top-level functions instead of static methods? It seems silly to import `std::rt::io::file` and `std::rt::io::File` at the top of files that need to deal with directories and files.
This renames the `file` module to `fs` because that more accurately describes
its current purpose (manipulating the filesystem, not just files).
Additionally, this adds an UnstableFileStat structure as a nested structure of
FileStat to signify that the fields should not be depended on. The structure is
currently flagged with #[unstable], but it's unlikely that it has much meaning.
Closes#10241
This file did not respect the #[link(name = "...")] attribute when it was
clearly intended to do so. The problem is that the crate attributes just weren't
passed in. This causes lots of problems in rust today because the object file
for all our libraries is inferred to be 'lib.o' because all of the files are
called 'lib.rs'.
I tried to figure out a good way to test for this, but I wasn't able to come up
with a good way that fit into our current testing framework. Nonetheless, I have
tested this locally and object files get named as they should. This should fix
compiling with `make -jN` again (because the object files are all different
again).
This adds bindings to the remaining functions provided by libuv, all of which
are useful operations on files which need to get exposed somehow.
Some highlights:
* Dropped `FileReader` and `FileWriter` and `FileStream` for one `File` type
* Moved all file-related methods to be static methods under `File`
* All directory related methods are still top-level functions
* Created `io::FilePermission` types (backed by u32) that are what you'd expect
* Created `io::FileType` and refactored `FileStat` to use FileType and
FilePermission
* Removed the expanding matrix of `FileMode` operations. The mode of reading a
file will not have the O_CREAT flag, but a write mode will always have the
O_CREAT flag.
Closes#10130Closes#10131Closes#10121
This commit moves all thread-blocking I/O functions from the std::os module.
Their replacements can be found in either std::rt::io::file or in a hidden
"old_os" module inside of native::file. I didn't want to outright delete these
functions because they have a lot of special casing learned over time for each
OS/platform, and I imagine that these will someday get integrated into a
blocking implementation of IoFactory. For now, they're moved to a private module
to prevent bitrot and still have tests to ensure that they work.
I've also expanded the extensions to a few more methods defined on Path, most of
which were previously defined in std::os but now have non-thread-blocking
implementations as part of using the current IoFactory.
The api of io::file is in flux, but I plan on changing it in the next commit as
well.
Closes#10057
Add a new trait BytesContainer that is implemented for both byte vectors
and strings.
Convert Path::from_vec and ::from_str to one function, Path::new().
Remove all the _str-suffixed mutation methods (push, join, with_*,
set_*) and modify the non-suffixed versions to use BytesContainer.
Remove the old path.
Rename path2 to path.
Update all clients for the new path.
Also make some miscellaneous changes to the Path APIs to help the
adoption process.
This fixes a bug in which the visibility rules were approximated by
reachability, but forgot to cover the case where a 'pub use' reexports a private
item. This fixes the commit by instead using the results of the privacy pass of
the compiler to create the initial working set of the reachability pass.
This may have the side effect of increasing the size of metadata, but it's
difficult to avoid for correctness purposes sadly.
Closes#9790
This commit is the culmination of my recent effort to refine Rust's notion of
privacy and visibility among crates. The major goals of this commit were to
remove privacy checking from resolve for the sake of sane error messages, and to
attempt a much more rigid and well-tested implementation of visibility
throughout rust. The implemented rules for name visibility are:
1. Everything pub from the root namespace is visible to anyone
2. You may access any private item of your ancestors.
"Accessing a private item" depends on what the item is, so for a function this
means that you can call it, but for a module it means that you can look inside
of it. Once you look inside a private module, any accessed item must be "pub
from the root" where the new root is the private module that you looked into.
These rules required some more analysis results to get propagated from trans to
privacy in the form of a few hash tables.
I added a new test in which my goal was to showcase all of the privacy nuances
of the language, and I hope to place any new bugs into this file to prevent
regressions.
Overall, I was unable to completely remove the notion of privacy from resolve.
One use of privacy is for dealing with glob imports. Essentially a glob import
can only import *public* items from the destination, and because this must be
done at namespace resolution time, resolve must maintain the notion of "what
items are public in a module". There are some sad approximations of privacy, but
I unfortunately can't see clear methods to extract them outside.
The other use case of privacy in resolve now is one that must stick around
regardless of glob imports. When dealing with privacy, checking a private path
needs to know "what the last private thing was" when looking at a path. Resolve
is the only compiler pass which knows the answer to this question, so it
maintains the answer on a per-path resolution basis (works similarly to the
def_map generated).
Closes#8215
A few features are now hidden behind various #[feature(...)] directives. These
include struct-like enum variants, glob imports, and macro_rules! invocations.
Closes#9304Closes#9305Closes#9306Closes#9331
Avoid allocating extra copies of strings by using "" instead of ~"" for
the debug options list and for the `time` function. This is a small
change, but it is in a path that's always executed.
It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html