This is both useful for performance (otherwise logging is unbuffered), but also
useful for correctness. Because when a task is destroyed we can't block the task
waiting for the logger to close, loggers are opened with a 'CloseAsynchronously'
specification. This causes libuv do defer the call to close() until the next
turn of the event loop.
If you spin in a tight loop around printing, you never yield control back to the
libuv event loop, meaning that you simply enqueue a large number of close
requests but nothing is actually closed. This queue ends up never getting
closed, meaning that if you keep trying to create handles one will eventually
fail, which the runtime will attempt to print the failure, causing mass
destruction.
Caching will provide better performance as well as prevent creation of too many
handles.
Closes#10626
When uv's TTY I/O is used for the stdio streams, the file descriptors are put
into a non-blocking mode. This means that other concurrent writes to the same
stream can fail with EAGAIN or EWOULDBLOCK. By all I/O to event-loop I/O, we
avoid this error.
There is one location which cannot move, which is the runtime's dumb_println
function. This was implemented to handle the EAGAIN and EWOULDBLOCK errors and
simply retry again and again.
This adds a large doc-block to the top of the std::logging module explaining how
to use it. This is mostly just making sure that all the information in the
manual's section about logging is also here (in case someone decides to look
into this module first).
This also removes the old console_{on,off} methods. As far as I can tell, the
functions were only used by the compiler, and there's no reason for them to be
used because they're all turned off by default anyway (maybe they were turned on
by default at some point...)
I believe that this is the final nail in the coffin and closes#5021
This lifts various restrictions on the runtime, for example the character limit
when logging a message. Right now the old debug!-style macros still involve
allocating (because they use fmt! syntax), but the new debug2! macros don't
involve allocating at all (unless the formatter for a type requires allocation.
A SendStr is a string that can hold either a ~str or a &'static str.
This can be useful as an optimization when an allocation is sometimes needed but the common case is statically known.
Possible use cases include Maps with both static and owned keys, or propagating error messages across task boundaries.
SendStr implements most basic traits in a way that hides the fact that it is an enum; in particular things like order and equality are only determined by the content of the wrapped strings.
Replaced std::rt:logging::SendableString with SendStr
Added tests for using an SendStr as key in Hash- and Treemaps
Also redefine all of the standard logging macros to use more rust code instead
of custom LLVM translation code. This makes them a bit easier to understand, but
also more flexibile for future types of logging.
Additionally, this commit removes the LogType language item in preparation for
changing how logging is performed.
This removes the stacking of type parameters that occurs when invoking
trait methods, and fixes all places in the standard library that were
relying on it. It is somewhat awkward in places; I think we'll probably
want something like the `Foo::<for T>::new()` syntax.
The truncation needs to be done in the console logger in order
to catch all the logging output, and because truncation only matters
when outputting to the console.