In accordance with [collections reform part 2][rfc] this macro has been moved to
an external [bitflags crate][crate] which is [available though
crates.io][cratesio]. Inside the standard distribution the macro has been moved
to a crate called `rustc_bitflags` for current users to continue using.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0509-collections-reform-part-2.md
[crate]: https://github.com/rust-lang/bitflags
[cratesio]: http://crates.io/crates/bitflags
The major user of `bitflags!` in terms of a public-facing possibly-stable API
today is the `FilePermissions` structure inside of `std::io`. This user,
however, will likely no longer use `bitflags!` after I/O reform has landed. To
prevent breaking APIs today, this structure remains as-is.
Current users of the `bitflags!` macro should add this to their `Cargo.toml`:
bitflags = "0.1"
and this to their crate root:
#[macro_use] extern crate bitflags;
Due to the removal of a public macro, this is a:
[breaking-change]
This partially implements the feature staging described in the
[release channel RFC][rc]. It does not yet fully conform to the RFC as
written, but does accomplish its goals sufficiently for the 1.0 alpha
release.
It has three primary user-visible effects:
* On the nightly channel, use of unstable APIs generates a warning.
* On the beta channel, use of unstable APIs generates a warning.
* On the beta channel, use of feature gates generates a warning.
Code that does not trigger these warnings is considered 'stable',
modulo pre-1.0 bugs.
Disabling the warnings for unstable APIs continues to be done in the
existing (i.e. old) style, via `#[allow(...)]`, not that specified in
the RFC. I deem this marginally acceptable since any code that must do
this is not using the stable dialect of Rust.
Use of feature gates is itself gated with the new 'unstable_features'
lint, on nightly set to 'allow', and on beta 'warn'.
The attribute scheme used here corresponds to an older version of the
RFC, with the `#[staged_api]` crate attribute toggling the staging
behavior of the stability attributes, but the user impact is only
in-tree so I'm not concerned about having to make design changes later
(and I may ultimately prefer the scheme here after all, with the
`#[staged_api]` crate attribute).
Since the Rust codebase itself makes use of unstable features the
compiler and build system do a midly elaborate dance to allow it to
bootstrap while disobeying these lints (which would otherwise be
errors because Rust builds with `-D warnings`).
This patch includes one significant hack that causes a
regression. Because the `format_args!` macro emits calls to unstable
APIs it would trigger the lint. I added a hack to the lint to make it
not trigger, but this in turn causes arguments to `println!` not to be
checked for feature gates. I don't presently understand macro
expansion well enough to fix. This is bug #20661.
Closes#16678
[rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
Next steps are to disable the existing out-of-tree behavior for stability attributes, and convert the remaining system to be feature-based per the RFC. During the first beta cycle we will set these lints to 'forbid'.
To avoid using the feauture, change uses of `box <expr>` to
`Box::new(<expr>)` alternative, as noted by the feature gate message.
(Note that box patterns have no analogous trivial replacement, at
least not in general; you need to revise the code to do a partial
match, deref, and then the rest of the match.)
[breaking-change]
This partially implements the feature staging described in the
[release channel RFC][rc]. It does not yet fully conform to the RFC as
written, but does accomplish its goals sufficiently for the 1.0 alpha
release.
It has three primary user-visible effects:
* On the nightly channel, use of unstable APIs generates a warning.
* On the beta channel, use of unstable APIs generates a warning.
* On the beta channel, use of feature gates generates a warning.
Code that does not trigger these warnings is considered 'stable',
modulo pre-1.0 bugs.
Disabling the warnings for unstable APIs continues to be done in the
existing (i.e. old) style, via `#[allow(...)]`, not that specified in
the RFC. I deem this marginally acceptable since any code that must do
this is not using the stable dialect of Rust.
Use of feature gates is itself gated with the new 'unstable_features'
lint, on nightly set to 'allow', and on beta 'warn'.
The attribute scheme used here corresponds to an older version of the
RFC, with the `#[staged_api]` crate attribute toggling the staging
behavior of the stability attributes, but the user impact is only
in-tree so I'm not concerned about having to make design changes later
(and I may ultimately prefer the scheme here after all, with the
`#[staged_api]` crate attribute).
Since the Rust codebase itself makes use of unstable features the
compiler and build system to a midly elaborate dance to allow it to
bootstrap while disobeying these lints (which would otherwise be
errors because Rust builds with `-D warnings`).
This patch includes one significant hack that causes a
regression. Because the `format_args!` macro emits calls to unstable
APIs it would trigger the lint. I added a hack to the lint to make it
not trigger, but this in turn causes arguments to `println!` not to be
checked for feature gates. I don't presently understand macro
expansion well enough to fix. This is bug #20661.
Closes#16678
[rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
This commit performs a pass over the `std::macros` module, applying stability
attributes where necessary. In particular, this audits macros for patterns such
as:
* Standard use of forward-to-format-args via `$($arg:tt)*` (or `+`)
* Prevent macro-defined identifiers from leaking into expression arguments as
hygiene is not perfectly implemented.
* Wherever possible, `$crate` is used now.
Specifically, the following actions were taken:
* The `std::macros` module itself is no longer public.
* The `panic!` macro is stable
* The `assert!` macro is stable
* The `assert_eq!` macro is stable
* The `debug_assert!` macro is stable
* The `debug_assert_eq!` macro is stable
* The `unreachable!` macro is stable after removing the extra forms to bring the
definition in line with the `unimplemented!` macro.
* The `try!` macro is stable
* The `vec!` macro is stable
[breaking-change]
This commit aims to prepare the `std::hash` module for alpha by formalizing its
current interface whileholding off on adding `#[stable]` to the new APIs. The
current usage with the `HashMap` and `HashSet` types is also reconciled by
separating out composable parts of the design. The primary goal of this slight
redesign is to separate the concepts of a hasher's state from a hashing
algorithm itself.
The primary change of this commit is to separate the `Hasher` trait into a
`Hasher` and a `HashState` trait. Conceptually the old `Hasher` trait was
actually just a factory for various states, but hashing had very little control
over how these states were used. Additionally the old `Hasher` trait was
actually fairly unrelated to hashing.
This commit redesigns the existing `Hasher` trait to match what the notion of a
`Hasher` normally implies with the following definition:
trait Hasher {
type Output;
fn reset(&mut self);
fn finish(&self) -> Output;
}
This `Hasher` trait emphasizes that hashing algorithms may produce outputs other
than a `u64`, so the output type is made generic. Other than that, however, very
little is assumed about a particular hasher. It is left up to implementors to
provide specific methods or trait implementations to feed data into a hasher.
The corresponding `Hash` trait becomes:
trait Hash<H: Hasher> {
fn hash(&self, &mut H);
}
The old default of `SipState` was removed from this trait as it's not something
that we're willing to stabilize until the end of time, but the type parameter is
always required to implement `Hasher`. Note that the type parameter `H` remains
on the trait to enable multidispatch for specialization of hashing for
particular hashers.
Note that `Writer` is not mentioned in either of `Hash` or `Hasher`, it is
simply used as part `derive` and the implementations for all primitive types.
With these definitions, the old `Hasher` trait is realized as a new `HashState`
trait in the `collections::hash_state` module as an unstable addition for
now. The current definition looks like:
trait HashState {
type Hasher: Hasher;
fn hasher(&self) -> Hasher;
}
The purpose of this trait is to emphasize that the one piece of functionality
for implementors is that new instances of `Hasher` can be created. This
conceptually represents the two keys from which more instances of a
`SipHasher` can be created, and a `HashState` is what's stored in a
`HashMap`, not a `Hasher`.
Implementors of custom hash algorithms should implement the `Hasher` trait, and
only hash algorithms intended for use in hash maps need to implement or worry
about the `HashState` trait.
The entire module and `HashState` infrastructure remains `#[unstable]` due to it
being recently redesigned, but some other stability decision made for the
`std::hash` module are:
* The `Writer` trait remains `#[experimental]` as it's intended to be replaced
with an `io::Writer` (more details soon).
* The top-level `hash` function is `#[unstable]` as it is intended to be generic
over the hashing algorithm instead of hardwired to `SipHasher`
* The inner `sip` module is now private as its one export, `SipHasher` is
reexported in the `hash` module.
And finally, a few changes were made to the default parameters on `HashMap`.
* The `RandomSipHasher` default type parameter was renamed to `RandomState`.
This renaming emphasizes that it is not a hasher, but rather just state to
generate hashers. It also moves away from the name "sip" as it may not always
be implemented as `SipHasher`. This type lives in the
`std::collections::hash_map` module as `#[unstable]`
* The associated `Hasher` type of `RandomState` is creatively called...
`Hasher`! This concrete structure lives next to `RandomState` as an
implemenation of the "default hashing algorithm" used for a `HashMap`. Under
the hood this is currently implemented as `SipHasher`, but it draws an
explicit interface for now and allows us to modify the implementation over
time if necessary.
There are many breaking changes outlined above, and as a result this commit is
a:
[breaking-change]
This PR introduces `isize` and `usize` modules to `core` and `std`, and
deprecates the existing `int` and `uint` modules. The rustdoc primitive
type links now point to these new modules.
Due to deprecation this is a:
[breaking-change]
Many of libstd's macros are now re-exported from libcore and libcollections.
Their libstd definitions have moved to a macros_stage0 module and can disappear
after the next snapshot.
Where the two crates had already diverged, I took the libstd versions as
they're generally newer and better-tested. See e.g. d3c831b, which was a fix to
libstd's assert_eq!() that didn't make it into libcore's.
Fixes#16806.
This commit is an implementation of [RFC 494][rfc] which removes the entire
`std::c_vec` module and redesigns the `std::c_str` module as `std::ffi`.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0494-c_str-and-c_vec-stability.md
The interface of the new `CString` is outlined in the linked RFC, the primary
changes being:
* The `ToCStr` trait is gone, meaning the `with_c_str` and `to_c_str` methods
are now gone. These two methods are replaced with a `CString::from_slice`
method.
* The `CString` type is now just a wrapper around `Vec<u8>` with a static
guarantee that there is a trailing nul byte with no internal nul bytes. This
means that `CString` now implements `Deref<Target = [c_char]>`, which is where
it gains most of its methods from. A few helper methods are added to acquire a
slice of `u8` instead of `c_char`, as well as including a slice with the
trailing nul byte if necessary.
* All usage of non-owned `CString` values is now done via two functions inside
of `std::ffi`, called `c_str_to_bytes` and `c_str_to_bytes_with_nul`. These
functions are now the one method used to convert a `*const c_char` to a Rust
slice of `u8`.
Many more details, including newly deprecated methods, can be found linked in
the RFC. This is a:
[breaking-change]
Closes#20444
This removes a large array of deprecated functionality, regardless of how
recently it was deprecated. The purpose of this commit is to clean out the
standard libraries and compiler for the upcoming alpha release.
Some notable compiler changes were to enable warnings for all now-deprecated
command line arguments (previously the deprecated versions were silently
accepted) as well as removing deriving(Zero) entirely (the trait was removed).
The distribution no longer contains the libtime or libregex_macros crates. Both
of these have been deprecated for some time and are available externally.
This commit is an implementation of [RFC 503][rfc] which is a stabilization
story for the prelude. Most of the RFC was directly applied, removing reexports.
Some reexports are kept around, however:
* `range` remains until range syntax has landed to reduce churn.
* `Path` and `GenericPath` remain until path reform lands. This is done to
prevent many imports of `GenericPath` which will soon be removed.
* All `io` traits remain until I/O reform lands so imports can be rewritten all
at once to `std::io::prelude::*`.
This is a breaking change because many prelude reexports have been removed, and
the RFC can be consulted for the exact list of removed reexports, as well as to
find the locations of where to import them.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0503-prelude-stabilization.md
[breaking-change]
Closes#20068
This is a [breaking-change]. The new rules require that, for an impl of a trait defined
in some other crate, two conditions must hold:
1. Some type must be local.
2. Every type parameter must appear "under" some local type.
Here are some examples that are legal:
```rust
struct MyStruct<T> { ... }
// Here `T` appears "under' `MyStruct`.
impl<T> Clone for MyStruct<T> { }
// Here `T` appears "under' `MyStruct` as well. Note that it also appears
// elsewhere.
impl<T> Iterator<T> for MyStruct<T> { }
```
Here is an illegal example:
```rust
// Here `U` does not appear "under" `MyStruct` or any other local type.
// We call `U` "uncovered".
impl<T,U> Iterator<U> for MyStruct<T> { }
```
There are a couple of ways to rewrite this last example so that it is
legal:
1. In some cases, the uncovered type parameter (here, `U`) should be converted
into an associated type. This is however a non-local change that requires access
to the original trait. Also, associated types are not fully baked.
2. Add `U` as a type parameter of `MyStruct`:
```rust
struct MyStruct<T,U> { ... }
impl<T,U> Iterator<U> for MyStruct<T,U> { }
```
3. Create a newtype wrapper for `U`
```rust
impl<T,U> Iterator<Wrapper<U>> for MyStruct<T,U> { }
```
Because associated types are not fully baked, which in the case of the
`Hash` trait makes adhering to this rule impossible, you can
temporarily disable this rule in your crate by using
`#![feature(old_orphan_check)]`. Note that the `old_orphan_check`
feature will be removed before 1.0 is released.
The new semantics of this function are that the callbacks are run when the *main
thread* exits, not when all threads have exited. This implies that other threads
may still be running when the `at_exit` callbacks are invoked and users need to
be prepared for this situation.
Users in the standard library have been audited in accordance to these new rules
as well.
Closes#20012
This commit takes a second pass through the `vec` module to
stabilize its API. The changes are as follows:
**Stable**:
* `dedup`
* `from_raw_parts`
* `insert`
* `into_iter`
* `is_empty`
* `remove`
* `reserve_exact`
* `reserve`
* `retain`
* `swap_remove`
* `truncate`
**Deprecated**:
* `from_fn`, `from_elem`, `grow_fn` and `grow`, all deprecated in
favor of iterators. See https://github.com/rust-lang/rfcs/pull/509
* `partition`, `partitioned`, deprecated in favor of a new, more
general iterator consumer called `partition`.
* `unzip`, deprecated in favor of a new, more general iterator
consumer called `unzip`.
A few remaining methods are left at experimental status.
[breaking-change]
This commit is a second pass stabilization for the `std::comm` module,
performing the following actions:
* The entire `std::comm` module was moved under `std::sync::mpsc`. This movement
reflects that channels are just yet another synchronization primitive, and
they don't necessarily deserve a special place outside of the other
concurrency primitives that the standard library offers.
* The `send` and `recv` methods have all been removed.
* The `send_opt` and `recv_opt` methods have been renamed to `send` and `recv`.
This means that all send/receive operations return a `Result` now indicating
whether the operation was successful or not.
* The error type of `send` is now a `SendError` to implement a custom error
message and allow for `unwrap()`. The error type contains an `into_inner`
method to extract the value.
* The error type of `recv` is now `RecvError` for the same reasons as `send`.
* The `TryRecvError` and `TrySendError` types have had public reexports removed
of their variants and the variant names have been tweaked with enum
namespacing rules.
* The `Messages` iterator is renamed to `Iter`
This functionality is now all `#[stable]`:
* `Sender`
* `SyncSender`
* `Receiver`
* `std::sync::mpsc`
* `channel`
* `sync_channel`
* `Iter`
* `Sender::send`
* `Sender::clone`
* `SyncSender::send`
* `SyncSender::try_send`
* `SyncSender::clone`
* `Receiver::recv`
* `Receiver::try_recv`
* `Receiver::iter`
* `SendError`
* `RecvError`
* `TrySendError::{mod, Full, Disconnected}`
* `TryRecvError::{mod, Empty, Disconnected}`
* `SendError::into_inner`
* `TrySendError::into_inner`
This is a breaking change due to the modification of where this module is
located, as well as the changing of the semantics of `send` and `recv`. Most
programs just need to rename imports of `std::comm` to `std::sync::mpsc` and
add calls to `unwrap` after a send or a receive operation.
[breaking-change]
This commit is an implementation of [RFC 503][rfc] which is a stabilization
story for the prelude. Most of the RFC was directly applied, removing reexports.
Some reexports are kept around, however:
* `range` remains until range syntax has landed to reduce churn.
* `Path` and `GenericPath` remain until path reform lands. This is done to
prevent many imports of `GenericPath` which will soon be removed.
* All `io` traits remain until I/O reform lands so imports can be rewritten all
at once to `std::io::prelude::*`.
This is a breaking change because many prelude reexports have been removed, and
the RFC can be consulted for the exact list of removed reexports, as well as to
find the locations of where to import them.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0503-prelude-stabilization.md
[breaking-change]
Closes#20068
This commit modifies rustdoc to not require these empty modules to be public in
the standard library. The modules still remain as a location to attach
documentation to, but the modules themselves are now private (don't have to
commit to an API). The documentation for the standard library now shows all of
the primitive types on the main index page.