This PR introduces a `Reflect` marker trait which is a supertrait of `Any`. The idea is that `Reflect` is defined for all concrete types, but is not defined for type parameters unless there is a `T:Reflect` bound. This is intended to preserve the parametricity property. This allows the `Any` interface to be stabilized without committing us to unbounded reflection that is not easily detectable by the caller.
The implementation of `Reflect` relies on an experimental variant of OIBIT. This variant behaves differently for objects, since it requires that all types exposed as part of the object's *interface* are `Reflect`, but isn't concerned about other types that may be closed over. In other words, you don't have to write `Foo+Reflect` in order for `Foo: Reflect` to hold (where `Foo` is a trait).
Given that `Any` is slated to stabilization and hence that we are committed to some form of reflection, the goal of this PR is to leave our options open with respect to parametricity. I see the options for full stabilization as follows (I think an RFC would be an appropriate way to confirm whichever of these three routes we take):
1. We make `Reflect` a lang-item.
2. We stabilize some version of the OIBIT variation I implemented as a general mechanism that may be appropriate for other use cases.
3. We give up on preserving parametricity here and just have `impl<T> Reflect for T` instead. In that case, `Reflect` is a harmless but not especially useful trait going forward.
cc @aturon
cc @alexcrichton
cc @glaebhoerl (this is more-or-less your proposal, as I understood it)
cc @reem (this is more-or-less what we discussed on IRC at some point)
cc @FlaPer87 (vaguely pertains to OIBIT)
Replace zeroing-on-drop with filling-on-drop.
This is meant to set the stage for removing *all* zeroing and filling (on drop) in the future.
Note that the code is meant to be entirely abstract with respect to the particular values used for the drop flags: the final commit demonstrates how to go from zeroing-on-drop to filling-on-drop by changing the value of three constants (in two files).
See further discussion on the internals thread:
http://internals.rust-lang.org/t/attention-hackers-filling-drop/1715/11
[breaking-change] especially for structs / enums using `#[unsafe_no_drop_flag]`.
Refactored code so that the drop-flag values for initialized
(`DTOR_NEEDED`) versus dropped (`DTOR_DONE`) are given explicit names.
Add `mem::dropped()` (which with `DTOR_DONE == 0` is semantically the
same as `mem::zeroed`, but the point is that it abstracts away from
the particular choice of value for `DTOR_DONE`).
Filling-drop needs to use something other than `ptr::read_and_zero`,
so I added such a function: `ptr::read_and_drop`. But, libraries
should not use it if they can otherwise avoid it.
Fixes to tests to accommodate filling-drop.
Reject specialized Drop impls.
See Issue #8142 for discussion.
This makes it illegal for a Drop impl to be more specialized than the original item.
So for example, all of the following are now rejected (when they would have been blindly accepted before):
```rust
struct S<A> { ... };
impl Drop for S<i8> { ... } // error: specialized to concrete type
struct T<'a> { ... };
impl Drop for T<'static> { ... } // error: specialized to concrete region
struct U<A> { ... };
impl<A:Clone> Drop for U<A> { ... } // error: added extra type requirement
struct V<'a,'b>;
impl<'a,'b:a> Drop for V<'a,'b> { ... } // error: added extra region requirement
```
Due to examples like the above, this is a [breaking-change].
(The fix is to either remove the specialization from the `Drop` impl, or to transcribe the requirements into the struct/enum definition; examples of both are shown in the PR's fixed to `libstd`.)
----
This is likely to be the last thing blocking the removal of the `#[unsafe_destructor]` attribute.
Fix#8142Fix#23584
The primary motivation here is to sidestep #19032 -- for a time, I thought that we should improve coherence or otherwise extend the language, but I now think that any such changes will require more time to bake. In the meantime, inheritance amongst the fn traits is both logically correct *and* a simple solution to that obstacle. This change introduces inheritance and modifies the compiler so that it can properly generate impls for closures and fns.
Things enabled by this PR (but not included in this PR):
1. An impl of `FnMut` for `&mut F` where `F : FnMut` (https://github.com/rust-lang/rust/issues/23015).
2. A better version of `Thunk` I've been calling `FnBox`.
I did not include either of these in the PR because:
1. Adding the impls in 1 currently induces a coherence conflict with the pattern trait. This is interesting and merits some discussion.
2. `FnBox` deserves to be a PR of its own.
The main downside to this design is (a) the need to write impls by hand; (b) the possibility of implementing `FnMut` with different semantics from `Fn`, etc. Point (a) is minor -- in particular, it does not affect normal closure usage -- and could be addressed in the future in many ways (better defaults; convenient macros; specialization; etc). Point (b) is unfortunate but "just a bug" from my POV, and certainly not unique to these traits (c.f. Copy/Clone, PartialEq/Eq, etc). (Until we lift the feature-gate on implementing the Fn traits, in any case, there is room to correct both of these if we find a nice way.)
Note that I believe this change is reversible in the future if we decide on another course of action, due to the feature gate on implementing the `Fn` traits, though I do not (currently) think we should reverse it.
Fixes#18835.
r? @nrc
See Issue 8142 for discussion.
This makes it illegal for a Drop impl to be more specialized than the
original item.
So for example, all of the following are now rejected (when they would
have been blindly accepted before):
```rust
struct S<A> { ... };
impl Drop for S<i8> { ... } // error: specialized to concrete type
struct T<'a> { ... };
impl Drop for T<'static> { ... } // error: specialized to concrete region
struct U<A> { ... };
impl<A:Clone> Drop for U<A> { ... } // error: added extra type requirement
struct V<'a,'b>;
impl<'a,'b:a> Drop for V<'a,'b> { ... } // error: added extra region requirement
```
Due to examples like the above, this is a [breaking-change].
(The fix is to either remove the specialization from the `Drop` impl,
or to transcribe the requirements into the struct/enum definition;
examples of both are shown in the PR's fixed to `libstd`.)
----
This is likely to be the last thing blocking the removal of the
`#[unsafe_destructor]` attribute.
Includes two new error codes for the new dropck check.
Update run-pass tests to accommodate new dropck pass.
Update tests and docs to reflect new destructor restriction.
----
Implementation notes:
We identify Drop impl specialization by not being as parametric as the
struct/enum definition via unification.
More specifically:
1. Attempt unification of a skolemized instance of the struct/enum
with an instance of the Drop impl's type expression where all of
the impl's generics (i.e. the free variables of the type
expression) have been replaced with unification variables.
2. If unification fails, then reject Drop impl as specialized.
3. If unification succeeds, check if any of the skolemized
variables "leaked" into the constraint set for the inference
context; if so, then reject Drop impl as specialized.
4. Otherwise, unification succeeded without leaking skolemized
variables: accept the Drop impl.
We identify whether a Drop impl is injecting new predicates by simply
looking whether the predicate, after an appropriate substitution,
appears on the struct/enum definition.
This permits all coercions to be performed in casts, but adds lints to warn in those cases.
Part of this patch moves cast checking to a later stage of type checking. We acquire obligations to check casts as part of type checking where we previously checked them. Once we have type checked a function or module, then we check any cast obligations which have been acquired. That means we have more type information available to check casts (this was crucial to making coercions work properly in place of some casts), but it means that casts cannot feed input into type inference.
[breaking change]
* Adds two new lints for trivial casts and trivial numeric casts, these are warn by default, but can cause errors if you build with warnings as errors. Previously, trivial numeric casts and casts to trait objects were allowed.
* The unused casts lint has gone.
* Interactions between casting and type inference have changed in subtle ways. Two ways this might manifest are:
- You may need to 'direct' casts more with extra type information, for example, in some cases where `foo as _ as T` succeeded, you may now need to specify the type for `_`
- Casts do not influence inference of integer types. E.g., the following used to type check:
```
let x = 42;
let y = &x as *const u32;
```
Because the cast would inform inference that `x` must have type `u32`. This no longer applies and the compiler will fallback to `i32` for `x` and thus there will be a type error in the cast. The solution is to add more type information:
```
let x: u32 = 42;
let y = &x as *const u32;
```
The method with which backwards compatibility was retained ended up leading to
documentation that rustdoc didn't handle well and largely ended up confusing.
This is a [breaking-change]. When indexing a generic map (hashmap, etc) using the `[]` operator, it is now necessary to borrow explicitly, so change `map[key]` to `map[&key]` (consistent with the `get` routine). However, indexing of string-valued maps with constant strings can now be written `map["abc"]`.
r? @japaric
cc @aturon @Gankro
Don't allow upcasting to a supertype in the type of the match discriminant. Fixes#23116.
This is a [breaking-change] in that it closes a type hole that previously existed.
r? @pnkfelix
This commit:
* Introduces `std::convert`, providing an implementation of
RFC 529.
* Deprecates the `AsPath`, `AsOsStr`, and `IntoBytes` traits, all
in favor of the corresponding generic conversion traits.
Consequently, various IO APIs now take `AsRef<Path>` rather than
`AsPath`, and so on. Since the types provided by `std` implement both
traits, this should cause relatively little breakage.
* Deprecates many `from_foo` constructors in favor of `from`.
* Changes `PathBuf::new` to take no argument (creating an empty buffer,
as per convention). The previous behavior is now available as
`PathBuf::from`.
* De-stabilizes `IntoCow`. It's not clear whether we need this separate trait.
Closes#22751Closes#14433
[breaking-change]
impls.
This requires:
1. modifying trait selection a bit so that when we synthesize impls for
fn pointers and closures;
2. adding code to trans so that we can synthesize a `FnMut`/`FnOnce`
impl for a `Fn` closure and so forth.
contains ref-bindings, do not permit any upcasting from the type of
the value being matched. Similarly, do not permit coercion in a `let`.
This is a [breaking-change] in that it closes a type hole that
previously existed, and in that coercion is not performed. You should
be able to work around the latter by converting:
```rust
let ref mut x: T = expr;
```
into
```rust
let x: T = expr;
let ref mut x = x;
```
Restricting coercion not to apply in the case of `let ref` or `let ref mut` is sort
of unexciting to me, but seems the best solution:
1. Mixing coercion and `let ref` or `let ref mut` is a bit odd, because you are taking
the address of a (coerced) temporary, but only sometimes. It's not syntactically evident,
in other words, what's going on. When you're doing a coercion, you're kind of
2. Put another way, I would like to preserve the relationship that
`equality <= subtyping <= coercion <= as-coercion`, where this is
an indication of the number of `(T1,T2)` pairs that are accepted by
the various relations. Trying to mix `let ref mut` and coercion
would create another kind of relation that is like coercion, but
acts differently in the case where a precise match is needed.
3. In any case, this is strictly more conservative than what we had
before and we can undo it in the future if we find a way to make
coercion mix with type equality.
The change to match I feel ok about but similarly unthrilled. There is
some subtle text already concerning whether to use eqtype or subtype
for identifier bindings. The best fix I think would be to always have
match use strict equality but use subtyping on identifier bindings,
but the comment `(*)` explains why that's not working at the moment.
As above, I think we can change this as we clean up the code there.
The method with which backwards compatibility was retained ended up leading to
documentation that rustdoc didn't handle well and largely ended up confusing.
This commit removes the `IndexMut` impls on `HashMap` and `BTreeMap`, in
order to future-proof the API against the eventual inclusion of an
`IndexSet` trait.
Ideally, we would eventually be able to support:
```rust
map[owned_key] = val;
map[borrowed_key].mutating_method(arguments);
&mut map[borrowed_key];
```
but to keep the design space as unconstrained as possible, we do not
currently want to support `IndexMut`, in case some other strategy will
eventually be needed.
Code currently using mutating index notation can use `get_mut` instead.
[breaking-change]
Closes#23448
This patch changes the type of byte string literals from `&[u8]` to `&[u8; N]`.
It also implements some necessary traits (`IntoBytes`, `Seek`, `Read`, `BufRead`) for fixed-size arrays (also related to #21725) and adds test for #17233, which seems to be resolved.
Fixes#18465
[breaking-change]
Safe fns are no longer subtypes of unsafe fns, but you can coerce from one to the other.
This is a [breaking-change] in that impl fns must now be declared `unsafe` if the trait is declared `unsafe`. In some rare cases, the subtyping change may also direct affect you, but no such cases were encountered in practice.
Fixes#23449.
r? @nrc
This upcast coercion currently never requires vtable changes. It should be generalized.
This is a [breaking-change] -- if you have an impl on an object type like `impl SomeTrait`, then this will no longer be applicable to object types like `SomeTrait+Send`. In the standard library, this primarily affected `Any`, and this PR adds impls for `Any+Send` as to keep the API the same in practice. An alternate workaround is to use UFCS form or standalone fns. For more details, see <https://github.com/rust-lang/rust/issues/18737#issuecomment-78450798>.
r? @nrc
This upcast coercion currently preserves the vtable for the object, but
eventually it can be used to create a derived vtable. The upcast
coercion is not introduced into method dispatch; see comment on #18737
for information about why. Fixes#18737.