tidy: enforce comment blocks to have an even number of backticks
After PR #108694, most unmatched backticks in `compiler/` comments have been eliminated. This PR adds a tidy lint to ensure no new unmatched backticks are added, and either addresses the lint in the remaining instances it found, or allows it.
Very often, backtick containing sections wrap around lines, for example:
```Rust
// This function takes a tuple `(Vec<String>,
// Box<[u8]>)` and transforms it into `Vec<u8>`.
```
The lint is implemented to work on top of blocks, counting each line with a `//` into a block, and counting if there are an odd or even number of backticks in the entire block, instead of looking at just a single line.
This makes it easier to open the messages file while developing on features.
The commit was the result of automatted changes:
for p in compiler/rustc_*; do mv $p/locales/en-US.ftl $p/messages.ftl; rmdir $p/locales; done
for p in compiler/rustc_*; do sed -i "s#\.\./locales/en-US.ftl#../messages.ftl#" $p/src/lib.rs; done
Implement goal caching with the new solver
Maybe it's wrong, idk. Opening mostly for first impressions before I go to sleep.
r? ``@lcnr,`` cc ``@cjgillot``
Don't even try to combine consts with incompatible types
~I left a more detailed explanation for why this fixes this issue in the UI test, but in general, we should not try to unify const infer vars and rigid consts if they have incompatible types. That's because we don't want something like a `ConstArgHasType` predicate to suddenly go from passing to failing, or vice versa, due to a shallow resolve.~
1. Use the `type_of` for a parameter in `try_eval_lit_or_param`, instead of the "expected" type from a `WithOptConstParam` def id.
2. Don't combine consts that have incompatible types.
Fixes#108781
Emit alias-eq when equating numeric var and projection
This doesn't fix everything having to do with projections and infer vars, but it does fix a common case I saw in HIR typeck.
r? `@lcnr`
Canonicalize root var when making response from new solver
During trait solving, if we equate two inference variables `?0` and `?1` but don't equate them with any rigid types, then `InferCtxt::probe_ty_var` will return `Err` for both of these. The canonicalizer code will then canonicalize the variables independently(!), and the response will not reflect the fact that these two variables have been made equal.
This hinders inference and I also don't think it's sound? I haven't thought too much about it past that, so let's talk about it.
r? ``@lcnr``
always resolve to universal regions if possible
`RegionConstraintCollector::opportunistic_resolve_var`, which is used in canonicalization and projection logic, doesn't resolve the region var to an equal universal region. So if we have equated `'static == '1 == '2`, it doesn't resolve `'1` or `'2` to `'static`. Now it does!
Addresses review comment https://github.com/rust-lang/rust/pull/107376#discussion_r1093233687.
r? `@lcnr`
rustc_middle: Remove trait `DefIdTree`
This trait was a way to generalize over both `TyCtxt` and `Resolver`, but now `Resolver` has access to `TyCtxt`, so this trait is no longer necessary.
rustc_infer: Consolidate obligation elaboration de-duplication
# Explanation
The obligations `Elaborator` is doing de-duplication of obligations in 3 different locations. 1 off which has a comment.
This PR consolidates the functionality and comment to a single function.
(This is a large commit. The changes to
`compiler/rustc_middle/src/ty/context.rs` are the most important ones.)
The current naming scheme is a mess, with a mix of `_intern_`, `intern_`
and `mk_` prefixes, with little consistency. In particular, in many
cases it's easy to use an iterator interner when a (preferable) slice
interner is available.
The guiding principles of the new naming system:
- No `_intern_` prefixes.
- The `intern_` prefix is for internal operations.
- The `mk_` prefix is for external operations.
- For cases where there is a slice interner and an iterator interner,
the former is `mk_foo` and the latter is `mk_foo_from_iter`.
Also, `slice_interners!` and `direct_interners!` can now be `pub` or
non-`pub`, which helps enforce the internal/external operations
division.
It's not perfect, but I think it's a clear improvement.
The following lists show everything that was renamed.
slice_interners
- const_list
- mk_const_list -> mk_const_list_from_iter
- intern_const_list -> mk_const_list
- substs
- mk_substs -> mk_substs_from_iter
- intern_substs -> mk_substs
- check_substs -> check_and_mk_substs (this is a weird one)
- canonical_var_infos
- intern_canonical_var_infos -> mk_canonical_var_infos
- poly_existential_predicates
- mk_poly_existential_predicates -> mk_poly_existential_predicates_from_iter
- intern_poly_existential_predicates -> mk_poly_existential_predicates
- _intern_poly_existential_predicates -> intern_poly_existential_predicates
- predicates
- mk_predicates -> mk_predicates_from_iter
- intern_predicates -> mk_predicates
- _intern_predicates -> intern_predicates
- projs
- intern_projs -> mk_projs
- place_elems
- mk_place_elems -> mk_place_elems_from_iter
- intern_place_elems -> mk_place_elems
- bound_variable_kinds
- mk_bound_variable_kinds -> mk_bound_variable_kinds_from_iter
- intern_bound_variable_kinds -> mk_bound_variable_kinds
direct_interners
- region
- intern_region (unchanged)
- const
- mk_const_internal -> intern_const
- const_allocation
- intern_const_alloc -> mk_const_alloc
- layout
- intern_layout -> mk_layout
- adt_def
- intern_adt_def -> mk_adt_def_from_data (unusual case, hard to avoid)
- alloc_adt_def(!) -> mk_adt_def
- external_constraints
- intern_external_constraints -> mk_external_constraints
Other
- type_list
- mk_type_list -> mk_type_list_from_iter
- intern_type_list -> mk_type_list
- tup
- mk_tup -> mk_tup_from_iter
- intern_tup -> mk_tup
Use `tcx.ty_error_with_guaranteed` in more places, rename variants
1. Use `ty_error_with_guaranteed` more so we don't delay so many span bugs
2. Rename `ty_error_with_guaranteed` to `ty_error`, `ty_error` to `ty_error_misc`. This is to incentivize using the former over the latter in cases where we already are witness to a `ErrorGuaranteed` token.
Second commit is just name replacement, so the first commit can be reviewed on its own with more scrutiny.
Use associated type bounds in some places in the compiler
Use associated type bounds for some nested `impl Trait<Assoc = impl Trait2>` cases. I'm generally keen to introduce new lang features that are more mature into the compiler, but maybe let's see what others think?
Side-note: I was surprised that the only use-cases of nested impl trait in the compiler are just iterator related?!
apply query response: actually define opaque types
not sure whether this fixes any code considering that #107891 doesn't break anything, but this is currently wrong as the `eq` there should just always fail right now.
We can definitely hit this code if we remove the `replace_opaque_types_with_inference_vars` hack. Doing so without this PR causes a few tests to ICE, e.g.
bd4a96a12d/tests/ui/impl-trait/issue-99642.rs (L1-L7)
r? `@oli-obk`
Don't delay `ReError` bug during lexical region resolve
Lexical region resolution returns a list of `RegionResolutionError` which don't necessarily correspond to diagnostics being emitted. The compiler may, validly, throw away these resolution errors and do something else. Therefore it's not valid to use `ReError` during lifetime resolution, since we may actually be on a totally fine compilation path.
For example, the `implied_bounds_entailment` lint runs region resolution twice, and only emits an error if it fails both times. If we delay a bug and create a `ReError` during this first run, then we will ICE.
Fixes#108170
----
Side-note: this is conceptually equivalent to how we can't necessarily delay bugs or create `ty::Error` during trait solving/fulfillment, since the compiler is allowed to throw away these fulfillment errors to do other things. It's only once we actually emit an error (`report_region_errors` / `report_fulfillment_errors`)
Remove type-traversal trait aliases
#107924 moved the type traversal (folding and visiting) traits into the type library, but created trait aliases in `rustc_middle` to minimise both the API churn for trait consumers and the arising boilerplate. As mentioned in that PR, an alternative approach of defining subtraits with blanket implementations of the respective supertraits was also considered at that time but was ruled out as not adding much value.
Unfortunately, it has since emerged that rust-analyzer has difficulty with these trait aliases at present, resulting in a degraded contributor experience (see the recent [r-a has become useless](https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/r-a.20has.20become.20useless) topic on the #t-compiler/help Zulip stream).
This PR removes the trait aliases, and accordingly the underlying type library traits are now used directly; they are parameterised by `TyCtxt<'tcx>` rather than just the `'tcx` lifetime, and imports have been updated to reflect the fact that the trait aliases' explicitly named traits are no longer automatically brought into scope. These changes also roll-back the (no-longer required) workarounds to #107747 that were made in b409329c62.
Since this PR is just a find+replace together with the changes necessary for compilation & tidy to pass, it's currently just one mega-commit. Let me know if you'd like it broken up.
r? `@oli-obk`