Stop allowing `rustc::potential_query_instability` on all of
`rustc_codegen_llvm` and instead allow it on a case-by-case basis. In
this case, both instances are safe to allow.
`.debug_pubnames` and `.debug_pubtypes` are poorly designed and people
seldom use them. However, they take a considerable portion of size in
the final binary. This tells LLVM stop emitting those sections on
DWARFv4 or lower. DWARFv5 use `.debug_names` which is more concise
in size and performant for name lookup.
Implement repr(packed) for repr(simd)
This allows creating vectors with non-power-of-2 lengths that do not have padding. See rust-lang/portable-simd#319
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Add more SIMD platform-intrinsics
- [x] simd_masked_load
- [x] LLVM codegen - llvm.masked.load
- [x] cranelift codegen - implemented but untested
- [ ] simd_masked_store
- [x] LLVM codegen - llvm.masked.store
- [ ] cranelift codegen
Also added a run-pass test to test both intrinsics, and additional build-fail & check-fail to cover validation for both intrinsics
update target feature following LLVM API change
LLVM commit e817966718 renamed* the `unaligned-scalar-mem` target feature to `fast-unaligned-access`.
(*) technically the commit folded two previous features into one, but there are no references to the other one in rust.
coverage: Use `SpanMarker` to improve coverage spans for `if !` expressions
Coverage instrumentation works by extracting source code spans from MIR. However, some kinds of syntax are effectively erased during MIR building, so their spans don't necessarily exist anywhere in MIR, making them invisible to the coverage instrumentor (unless we resort to various heuristics and hacks to recover them).
This PR introduces `CoverageKind::SpanMarker`, which is a new variant of `StatementKind::Coverage`. Its sole purpose is to represent spans that would otherwise not appear in MIR, so that the coverage instrumentor can extract them.
When coverage is enabled, the MIR builder can insert these dummy statements as needed, to improve the accuracy of spans used by coverage mappings.
Fixes#115468.
---
```@rustbot``` label +A-code-coverage
Add emulated TLS support
This is a reopen of https://github.com/rust-lang/rust/pull/96317 . many android devices still only use 128 pthread keys, so using emutls can be helpful.
Currently LLVM uses emutls by default for some targets (such as android, openbsd), but rust does not use it, because `has_thread_local` is false.
This commit has some changes to allow users to enable emutls:
1. add `-Zhas-thread-local` flag to specify that std uses `#[thread_local]` instead of pthread key.
2. when using emutls, decorate symbol names to find thread local symbol correctly.
3. change `-Zforce-emulated-tls` to `-Ztls-model=emulated` to explicitly specify whether to generate emutls.
r? `@Amanieu`
There are cases where coverage instrumentation wants to show a span for some
syntax element, but there is no MIR node that naturally carries that span, so
the instrumentor can't see it.
MIR building can now use this new kind of coverage statement to deliberately
include those spans in MIR, attached to a dummy statement that has no other
effect.
Avoid adding builtin functions to `symbols.o`
We found performance regressions in #113923. The problem seems to be that `--gc-sections` does not remove these symbols. I tested that lld removes these symbols, but ld and gold do not.
I found that `used` adds symbols to `symbols.o` at 3e202ead60/compiler/rustc_codegen_ssa/src/back/linker.rs (L1786-L1791).
The PR removes builtin functions.
Note that under LTO, ld still preserves these symbols. (lld will still remove them.)
The first commit also fixes#118559. But I think the second commit also makes sense.
compile-time evaluation: detect writes through immutable pointers
This has two motivations:
- it unblocks https://github.com/rust-lang/rust/pull/116745 (and therefore takes a big step towards `const_mut_refs` stabilization), because we can now detect if the memory that we find in `const` can be interned as "immutable"
- it would detect the UB that was uncovered in https://github.com/rust-lang/rust/pull/117905, which was caused by accidental stabilization of `copy` functions in `const` that can only be called with UB
When UB is detected, we emit a future-compat warn-by-default lint. This is not a breaking change, so completely in line with [the const-UB RFC](https://rust-lang.github.io/rfcs/3016-const-ub.html), meaning we don't need t-lang FCP here. I made the lint immediately show up for dependencies since it is nearly impossible to even trigger this lint without `const_mut_refs` -- the accidentally stabilized `copy` functions are the only way this can happen, so the crates that popped up in #117905 are the only causes of such UB (in the code that crater covers), and the three cases of UB that we know about have all been fixed in their respective crates already.
The way this is implemented is by making use of the fact that our interpreter is already generic over the notion of provenance. For CTFE we now use the new `CtfeProvenance` type which is conceptually an `AllocId` plus a boolean `immutable` flag (but packed for a more efficient representation). This means we can mark a pointer as immutable when it is created as a shared reference. The flag will be propagated to all pointers derived from this one. We can then check the immutable flag on each write to reject writes through immutable pointers.
I just hope perf works out.
Currently LLVM uses emutls by default
for some targets (such as android, openbsd),
but rust does not use it, because `has_thread_local` is false.
This commit has some changes to allow users to enable emutls:
1. add `-Zhas-thread-local` flag to specify
that std uses `#[thread_local]` instead of pthread key.
2. when using emutls, decorate symbol names
to find thread local symbol correctly.
3. change `-Zforce-emulated-tls` to `-Ztls-model=emulated`
to explicitly specify whether to generate emutls.
These impls are all needed for just a single `IntoDiagnostic` type, not
a family of them.
Note that `ErrorGuaranteed` is the default type parameter for
`IntoDiagnostic`.
Restore `#![no_builtins]` crates participation in LTO.
After #113716, we can make `#![no_builtins]` crates participate in LTO again.
`#![no_builtins]` with LTO does not result in undefined references to the error. I believe this type of issue won't happen again.
Fixes#72140. Fixes#112245. Fixes#110606. Fixes#105734. Fixes#96486. Fixes#108853. Fixes#108893. Fixes#78744. Fixes#91158. Fixes https://github.com/rust-lang/cargo/issues/10118. Fixes https://github.com/rust-lang/compiler-builtins/issues/347.
The `nightly-2023-07-20` version does not always reproduce problems due to changes in compiler-builtins, core, and user code. That's why this issue recurs and disappears.
Some issues were not tested due to the difficulty of reproducing them.
r? pnkfelix
cc `@bjorn3` `@japaric` `@alexcrichton` `@Amanieu`
Add `-Zfunction-return={keep,thunk-extern}` option
This is intended to be used for Linux kernel RETHUNK builds.
With this commit (optionally backported to Rust 1.73.0), plus a patched Linux kernel to pass the flag, I get a RETHUNK build with Rust enabled that is `objtool`-warning-free and is able to boot in QEMU and load a sample Rust kernel module.
Issue: https://github.com/rust-lang/rust/issues/116853.
This is intended to be used for Linux kernel RETHUNK builds.
With this commit (optionally backported to Rust 1.73.0), plus a
patched Linux kernel to pass the flag, I get a RETHUNK build with
Rust enabled that is `objtool`-warning-free and is able to boot in
QEMU and load a sample Rust kernel module.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
If the TargetMachine is disposed after the Context is disposed, it can
lead to use after frees in some cases.
I've observed this happening occasionally on code compiled for
aarch64-pc-windows-msvc using `-Zstack-protector=strong` but other users
have reported AVs from host aarch64-pc-windows-msvc compilers as well.
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
Tighten up link attributes for llvm-wrapper bindings
Fixes https://github.com/rust-lang/rust/issues/118084 by moving all of the declarations of symbols from `llvm_rust` into a separate extern block with `#[link(name = "llvm-wrapper", kind = "static")]`.
This also renames `LLVMTimeTraceProfiler*` to `LLVMRustTimeTraceProfiler*` because those are functions from `llvm_rust`.
r? tmiasko
Enable Rust to use the EHCont security feature of Windows
In the future Windows will enable Control-flow Enforcement Technology (CET aka Shadow Stacks). To protect the path where the context is updated during exception handling, the binary is required to enumerate valid unwind entrypoints in a dedicated section which is validated when the context is being set during exception handling.
The required support for EHCONT Guard has already been merged into LLVM, long ago. This change simply adds the Rust codegen option to enable it.
Relevant LLVM change: https://reviews.llvm.org/D40223
This also adds a new `ehcont-guard` option to the bootstrap config which enables EHCont Guard when building std.
We at Microsoft have been using this feature for a significant period of time; we are confident that the LLVM feature, when enabled, generates well-formed code.
We currently enable EHCONT using a codegen feature, but I'm certainly open to refactoring this to be a target feature instead, or to use any appropriate mechanism to enable it.
By default, `newtype_index!` types get a default `Encodable`/`Decodable`
impl. You can opt out of this with `custom_encodable`. Opting out is the
opposite to how Rust normally works with autogenerated (derived) impls.
This commit inverts the behaviour, replacing `custom_encodable` with
`encodable` which opts into the default `Encodable`/`Decodable` impl.
Only 23 of the 59 `newtype_index!` occurrences need `encodable`.
Even better, there were eight crates with a dependency on
`rustc_serialize` just from unused default `Encodable`/`Decodable`
impls. This commit removes that dependency from those eight crates.
In the future Windows will enable Control-flow Enforcement Technology
(CET aka Shadow Stacks). To protect the path where the context is
updated during exception handling, the binary is required to enumerate
valid unwind entrypoints in a dedicated section which is validated when
the context is being set during exception handling.
The required support for EHCONT has already been merged into LLVM,
long ago. This change adds the Rust codegen option to enable it.
Reference:
* https://reviews.llvm.org/D40223
This also adds a new `ehcont-guard` option to the bootstrap config which
enables EHCont Guard when building std.
Ensure sanity of all computed ABIs
This moves the ABI sanity assertions from the codegen backend to the ABI computation logic. Sadly, due to past mistakes, we [have to](https://github.com/rust-lang/rust/pull/117351#issuecomment-1788495503) be able to compute a sane ABI for nonsensical function types like `extern "C" fn(str) -> str`. So to make the sanity check pass we first need to make all ABI adjustment deal with unsized types... and we have no shared infrastructure for those adjustments, so that's a bunch of copy-paste. At least we have assertions failing loudly when one accidentally sets a different mode for an unsized argument.
To achieve this, this re-lands the parts of https://github.com/rust-lang/rust/pull/80594 that got reverted in https://github.com/rust-lang/rust/pull/81388. To avoid breaking wasm ABI again, that ABI now explicitly opts-in to the (wrong, broken) ABI that we currently keep for backwards compatibility. That's still better than having *every* ABI use the wrong broken default!
Cc `@bjorn3`
Fixes https://github.com/rust-lang/rust/issues/115845
Remove asmjs
Fulfills [MCP 668](https://github.com/rust-lang/compiler-team/issues/668).
`asmjs-unknown-emscripten` does not work as-specified, and lacks essential upstream support for generating asm.js, so it should not exist at all.