various const parameter defaults improvements
Actually resolve names in const parameter defaults, fixing `struct Foo<const N: usize = { usize::MAX }>`.
---
Split generic parameter ban rib for types and consts, allowing
```rust
#![feature(const_generics_defaults)]
struct Q;
struct Foo<T = Q, const Q: usize = 3>(T);
```
---
Remove the type/const ordering restriction if `const_generics_defaults` is active, even if `const_generics` is not. allowing us to stabilize and test const param defaults separately.
---
Check well formedness of const parameter defaults, eagerly emitting an error for `struct Foo<const N: usize = { 0 - 1 }>`
---
Do not forbid const parameters in param defaults, allowing `struct Foo<const N: usize, T = [u8; N]>(T)` and `struct Foo<const N: usize, const M: usize = N>`. Note that this should not change anything which is stabilized, as on stable, type parameters must be in front of const parameters, which means that type parameter defaults are only allowed if no const parameters exist.
We still forbid generic parameters inside of const param types.
r? `@varkor` `@petrochenkov`
further split up const_fn feature flag
This continues the work on splitting up `const_fn` into separate feature flags:
* `const_fn_trait_bound` for `const fn` with trait bounds
* `const_fn_unsize` for unsizing coercions in `const fn` (looks like only `dyn` unsizing is still guarded here)
I don't know if there are even any things left that `const_fn` guards... at least libcore and liballoc do not need it any more.
`@oli-obk` are you currently able to do reviews?
Use AnonConst for asm! constants
This replaces the old system which used explicit promotion. See #83169 for more background.
The syntax for `const` operands is still the same as before: `const <expr>`.
Fixes#83169
Because the implementation is heavily based on inline consts, we suffer from the same issues:
- We lose the ability to use expressions derived from generics. See the deleted tests in `src/test/ui/asm/const.rs`.
- We are hitting the same ICEs as inline consts, for example #78174. It is unlikely that we will be able to stabilize this before inline consts are stabilized.
Avoid sorting by DefId for `necessary_variants()`
Follow-up to https://github.com/rust-lang/rust/pull/83074. Originally I tried removing `impl Ord for DefId` but that hit *lots* of errors 😅 so I thought I would start with easy things.
I am not sure whether this could actually cause invalid query results, but this is used from `MarkSymbolVisitor::visit_arm` so it's at least feasible.
r? `@Aaron1011`
- Add back `HirIdVec`, with a comment that it will soon be used.
- Add back `*_region` functions, with a comment they may soon be used.
- Remove `-Z borrowck_stats` completely. It didn't do anything.
- Remove `make_nop` completely.
- Add back `current_loc`, which is used by an out-of-tree tool.
- Fix style nits
- Remove `AtomicCell` with `cfg(parallel_compiler)` for consistency.
Found with https://github.com/est31/warnalyzer.
Dubious changes:
- Is anyone else using rustc_apfloat? I feel weird completely deleting
x87 support.
- Maybe some of the dead code in rustc_data_structures, in case someone
wants to use it in the future?
- Don't change rustc_serialize
I plan to scrap most of the json module in the near future (see
https://github.com/rust-lang/compiler-team/issues/418) and fixing the
tests needed more work than I expected.
TODO: check if any of the comments on the deleted code should be kept.
ast/hir: Rename field-related structures
I always forget what `ast::Field` and `ast::StructField` mean despite working with AST for long time, so this PR changes the naming to less confusing and more consistent.
- `StructField` -> `FieldDef` ("field definition")
- `Field` -> `ExprField` ("expression field", not "field expression")
- `FieldPat` -> `PatField` ("pattern field", not "field pattern")
Various visiting and other methods working with the fields are renamed correspondingly too.
The second commit reduces the size of `ExprKind` by boxing fields of `ExprKind::Struct` in preparation for https://github.com/rust-lang/rust/pull/80080.
More precise spans for HIR paths
`Ty::assoc_item` is lowered to `<Ty>::assoc_item` in HIR, but `Ty` got span from the whole path.
This PR fixes that, and adjusts some diagnostic code that relied on `Ty` having the whole path span.
This is a pre-requisite for https://github.com/rust-lang/rust/pull/82868 (we cannot report suggestions like `Tr::assoc` -> `<dyn Tr>::assoc` with the current imprecise spans).
r? ````@estebank````
StructField -> FieldDef ("field definition")
Field -> ExprField ("expression field", not "field expression")
FieldPat -> PatField ("pattern field", not "field pattern")
Also rename visiting and other methods working on them.
Add a `min_type_alias_impl_trait` feature gate
This new feature gate only permits type alias impl trait to be constrained by function and trait method return types. All other possible constraining sites like const/static types, closure return types and binding types are now forbidden and gated under the `type_alias_impl_trait` and `impl_trait_in_bindings` feature gates (which are both marked as incomplete, as they have various ways to ICE the compiler or cause query cycles where they shouldn't).
r? `@nikomatsakis`
This is best reviewed commit-by-commit
Change x64 size checks to not apply to x32.
Rust contains various size checks conditional on target_arch = "x86_64", but these checks were never intended to apply to x86_64-unknown-linux-gnux32. Add target_pointer_width = "64" to the conditions.
Let a portion of DefPathHash uniquely identify the DefPath's crate.
This allows to directly map from a `DefPathHash` to the crate it originates from, without constructing side tables to do that mapping -- something that is useful for incremental compilation where we deal with `DefPathHash` instead of `DefId` a lot.
It also allows to reliably and cheaply check for `DefPathHash` collisions which allows the compiler to gracefully abort compilation instead of running into a subsequent ICE at some random place in the code.
The following new piece of documentation describes the most interesting aspects of the changes:
```rust
/// A `DefPathHash` is a fixed-size representation of a `DefPath` that is
/// stable across crate and compilation session boundaries. It consists of two
/// separate 64-bit hashes. The first uniquely identifies the crate this
/// `DefPathHash` originates from (see [StableCrateId]), and the second
/// uniquely identifies the corresponding `DefPath` within that crate. Together
/// they form a unique identifier within an entire crate graph.
///
/// There is a very small chance of hash collisions, which would mean that two
/// different `DefPath`s map to the same `DefPathHash`. Proceeding compilation
/// with such a hash collision would very probably lead to an ICE and, in the
/// worst case, to a silent mis-compilation. The compiler therefore actively
/// and exhaustively checks for such hash collisions and aborts compilation if
/// it finds one.
///
/// `DefPathHash` uses 64-bit hashes for both the crate-id part and the
/// crate-internal part, even though it is likely that there are many more
/// `LocalDefId`s in a single crate than there are individual crates in a crate
/// graph. Since we use the same number of bits in both cases, the collision
/// probability for the crate-local part will be quite a bit higher (though
/// still very small).
///
/// This imbalance is not by accident: A hash collision in the
/// crate-local part of a `DefPathHash` will be detected and reported while
/// compiling the crate in question. Such a collision does not depend on
/// outside factors and can be easily fixed by the crate maintainer (e.g. by
/// renaming the item in question or by bumping the crate version in a harmless
/// way).
///
/// A collision between crate-id hashes on the other hand is harder to fix
/// because it depends on the set of crates in the entire crate graph of a
/// compilation session. Again, using the same crate with a different version
/// number would fix the issue with a high probability -- but that might be
/// easier said then done if the crates in questions are dependencies of
/// third-party crates.
///
/// That being said, given a high quality hash function, the collision
/// probabilities in question are very small. For example, for a big crate like
/// `rustc_middle` (with ~50000 `LocalDefId`s as of the time of writing) there
/// is a probability of roughly 1 in 14,750,000,000 of a crate-internal
/// collision occurring. For a big crate graph with 1000 crates in it, there is
/// a probability of 1 in 36,890,000,000,000 of a `StableCrateId` collision.
```
Given the probabilities involved I hope that no one will ever actually see the error messages. Nonetheless, I'd be glad about some feedback on how to improve them. Should we create a GH issue describing the problem and possible solutions to point to? Or a page in the rustc book?
r? `@pnkfelix` (feel free to re-assign)
Rust contains various size checks conditional on target_arch = "x86_64",
but these checks were never intended to apply to
x86_64-unknown-linux-gnux32. Add target_pointer_width = "64" to the
conditions.
This improves help messages in two cases:
- When expected type is `T` and found type is `&T`, we now look through blocks
and suggest dereferencing the expression of the block, rather than the whole
block.
- In the above case, if the expression is an `&`, we not suggest removing the
`&` instead of adding `*`.
Both of these are demonstrated in the regression test. Before this patch the
first error in the test would be:
error[E0308]: `if` and `else` have incompatible types
--> test.rs:8:9
|
5 | / if true {
6 | | a
| | - expected because of this
7 | | } else {
8 | | b
| | ^ expected `usize`, found `&usize`
9 | | };
| |_____- `if` and `else` have incompatible types
|
help: consider dereferencing the borrow
|
7 | } else *{
8 | b
9 | };
|
Now:
error[E0308]: `if` and `else` have incompatible types
--> test.rs:8:9
|
5 | / if true {
6 | | a
| | - expected because of this
7 | | } else {
8 | | b
| | ^
| | |
| | expected `usize`, found `&usize`
| | help: consider dereferencing the borrow: `*b`
9 | | };
| |_____- `if` and `else` have incompatible types
The second error:
error[E0308]: `if` and `else` have incompatible types
--> test.rs:14:9
|
11 | / if true {
12 | | 1
| | - expected because of this
13 | | } else {
14 | | &1
| | ^^ expected integer, found `&{integer}`
15 | | };
| |_____- `if` and `else` have incompatible types
|
help: consider dereferencing the borrow
|
13 | } else *{
14 | &1
15 | };
|
now:
error[E0308]: `if` and `else` have incompatible types
--> test.rs:14:9
|
11 | / if true {
12 | | 1
| | - expected because of this
13 | | } else {
14 | | &1
| | ^-
| | ||
| | |help: consider removing the `&`: `1`
| | expected integer, found `&{integer}`
15 | | };
| |_____- `if` and `else` have incompatible types
Fixes#82361
Suggest `return`ing tail expressions that match return type
Some newcomers are confused by the behavior of tail expressions,
interpreting that "leaving out the `;` makes it the return value".
To help them go in the right direction, suggest using `return` instead
when applicable.
When a tail expression isn't unit, we previously always suggested adding
a trailing `;` to turn it into a statement. This suggestion isn't
appropriate for any expression that doesn't have side-effects, as the
user will have likely wanted to call something else or do something with
the resulting value, instead of just discarding it.
ast: Keep expansion status for out-of-line module items
I.e. whether a module `mod foo;` is already loaded from a file or not.
This is a pre-requisite to correctly treating inner attributes on such modules (https://github.com/rust-lang/rust/issues/81661).
With this change AST structures for `mod` items diverge even more for AST structure for the crate root, which previously used `ast::Mod`.
Therefore this PR removes `ast::Mod` from `ast::Crate` in the first commit, these two things are sufficiently different from each other, at least at syntactic level.
Customization points for visiting a "`mod` item or crate root" were also removed from AST visitors (`fn visit_mod`).
`ast::Mod` itself was refactored away in the second commit in favor of `ItemKind::Mod(Unsafe, ModKind)`.
name async generators something more human friendly in type error diagnostic
fixes#81457
Some details:
1. I opted to load the generator kind from the hir in TyCategory. I also use 1 impl in the hir for the descr
2. I named both the source of the future, in addition to the general type (`future`), not sure what is preferred
3. I am not sure what is required to make sure "generator" is not referred to anywhere. A brief `rg "\"generator\"" showed me that most diagnostics correctly distinguish from generators and async generator, but the `descr` of `DefKind` is pretty general (not sure how thats used)
4. should the descr impl of AsyncGeneratorKind use its display impl instead of copying the string?
Ensure valid TraitRefs are created for GATs
This fixes `ProjectionTy::trait_ref` to use the correct substs. Places that need all of the substs have been updated to not use `trait_ref`.
r? ````@jackh726````
Crate root is sufficiently different from `mod` items, at least at syntactic level.
Also remove customization point for "`mod` item or crate root" from AST visitors.
Implement RFC 2580: Pointer metadata & VTable
RFC: https://github.com/rust-lang/rfcs/pull/2580
~~Before merging this PR:~~
* [x] Wait for the end of the RFC’s [FCP to merge](https://github.com/rust-lang/rfcs/pull/2580#issuecomment-759145278).
* [x] Open a tracking issue: https://github.com/rust-lang/rust/issues/81513
* [x] Update `#[unstable]` attributes in the PR with the tracking issue number
----
This PR extends the language with a new lang item for the `Pointee` trait which is special-cased in trait resolution to implement it for all types. Even in generic contexts, parameters can be assumed to implement it without a corresponding bound.
For this I mostly imitated what the compiler was already doing for the `DiscriminantKind` trait. I’m very unfamiliar with compiler internals, so careful review is appreciated.
This PR also extends the standard library with new unstable APIs in `core::ptr` and `std::ptr`:
```rust
pub trait Pointee {
/// One of `()`, `usize`, or `DynMetadata<dyn SomeTrait>`
type Metadata: Copy + Send + Sync + Ord + Hash + Unpin;
}
pub trait Thin = Pointee<Metadata = ()>;
pub const fn metadata<T: ?Sized>(ptr: *const T) -> <T as Pointee>::Metadata {}
pub const fn from_raw_parts<T: ?Sized>(*const (), <T as Pointee>::Metadata) -> *const T {}
pub const fn from_raw_parts_mut<T: ?Sized>(*mut (),<T as Pointee>::Metadata) -> *mut T {}
impl<T: ?Sized> NonNull<T> {
pub const fn from_raw_parts(NonNull<()>, <T as Pointee>::Metadata) -> NonNull<T> {}
/// Convenience for `(ptr.cast(), metadata(ptr))`
pub const fn to_raw_parts(self) -> (NonNull<()>, <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *const T {
pub const fn to_raw_parts(self) -> (*const (), <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *mut T {
pub const fn to_raw_parts(self) -> (*mut (), <T as Pointee>::Metadata) {}
}
/// `<dyn SomeTrait as Pointee>::Metadata == DynMetadata<dyn SomeTrait>`
pub struct DynMetadata<Dyn: ?Sized> {
// Private pointer to vtable
}
impl<Dyn: ?Sized> DynMetadata<Dyn> {
pub fn size_of(self) -> usize {}
pub fn align_of(self) -> usize {}
pub fn layout(self) -> crate::alloc::Layout {}
}
unsafe impl<Dyn: ?Sized> Send for DynMetadata<Dyn> {}
unsafe impl<Dyn: ?Sized> Sync for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Debug for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Unpin for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Copy for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Clone for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Eq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialEq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Ord for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialOrd for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Hash for DynMetadata<Dyn> {}
```
API differences from the RFC, in areas noted as unresolved questions in the RFC:
* Module-level functions instead of associated `from_raw_parts` functions on `*const T` and `*mut T`, following the precedent of `null`, `slice_from_raw_parts`, etc.
* Added `to_raw_parts`
Updated smallvec version due to RUSTSEC-2021-0003
Hi.
Updated Cargo.toml's for smallvec due to RUSTSEC-2021-0003 and Cargo.toml in separate commit.
Affected function `SmallVec::insert_many` looks like don't was used directly in rust, but can be somewhere in deps.
There should be some mechanism to not to do this kind of things manually, like dependabot. Actually, dependabot supports rust and can check security articles (at least that noted in description).
Visit more targets when validating attributes
This begins to address #80048, allowing for additional validation of attributes.
There are more refactorings that can be done, though I think they should be tackled in additional PRs:
* ICE when a builtin attribute is encountered that is not checked
* Move some of the attr checking done `ast_validation` into `rustc_passes`
* note that this requires a bit of additional refactoring, especially of extern items which currently parse attributes (and thus are a part of the AST) but do not possess attributes in their HIR representation.
* Rename `Target` to `AttributeTarget`
* Refactor attribute validation completely to go through `Visitor::visit_attribute`.
* This would require at a minimum passing `Target` into this method which might be too big of a refactoring to be worth it.
* It's also likely not possible to do all the validation this way as some validation requires knowing what other attributes a target has.
r? `@davidtwco`
This renames the variants in HIR UnOp from
enum UnOp {
UnDeref,
UnNot,
UnNeg,
}
to
enum UnOp {
Deref,
Not,
Neg,
}
Motivations:
- This is more consistent with the rest of the code base where most enum
variants don't have a prefix.
- These variants are never used without the `UnOp` prefix so the extra
`Un` prefix doesn't help with readability. E.g. we don't have any
`UnDeref`s in the code, we only have `UnOp::UnDeref`.
- MIR `UnOp` type variants don't have a prefix so this is more
consistent with MIR types.
- "un" prefix reads like "inverse" or "reverse", so as a beginner in
rustc code base when I see "UnDeref" what comes to my mind is
something like "&*" instead of just "*".
Refactor `PrimitiveTypeTable` for Clippy
I removed `PrimitiveTypeTable` and added `PrimTy::ALL` and `PrimTy::from_name` in its place. This allows Clippy to use `PrimTy::from_name` for the `builtin_type_shadow` lint, and a `const` list of primitive types is deleted from Clippy code (the goal). All changes should be a little faster, if anything.