fix: Correct references from `rust-analyzer.cargo.check` to `rust-analyzer.check`
When reading the manual, I noticed that the documentation referenced configurations that have since been renamed. This PR updates those references to their new names.
While reading through the code base, I stumbled across a piece of code that I found hard to read despite its simple purpose. This is my attempt at making the code easier to understand for future readers.
I won't be offended if this is too minor and not worth your time.
TokenMap -> SpanMap rewrite
Opening early so I can have an overview over the full diff more easily, still very unfinished and lots of work to be done.
The gist of what this PR does is move away from assigning IDs to tokens in arguments and expansions and instead gives the subtrees the text ranges they are sourced from (made relative to some item for incrementality). This means we now only have a single map per expension, opposed to map for expansion and arguments.
A few of the things that are not done yet (in arbitrary order):
- [x] generally clean up the current mess
- [x] proc-macros, have been completely ignored so far
- [x] syntax fixups, has been commented out for the time being needs to be rewritten on top of some marker SyntaxContextId
- [x] macro invocation syntax contexts are not properly passed around yet, so $crate hygiene does not work in all cases (but most)
- [x] builtin macros do not set spans properly, $crate basically does not work with them rn (which we use)
~~- [ ] remove all uses of dummy spans (or if that does not work, change the dummy entries for dummy spans so that tests will not silently pass due to havin a file id for the dummy file)~~
- [x] de-queryfy `macro_expand`, the sole caller of it is `parse_macro_expansion`, and both of these are lru-cached with the same limit so having it be a query is pointless
- [x] docs and more docs
- [x] fix eager macro spans and other stuff
- [x] simplify include! handling
- [x] Figure out how to undo the sudden `()` expression wrapping in expansions / alternatively prioritize getting invisible delimiters working again
- [x] Simplify InFile stuff and HirFIleId extensions
~~- [ ] span crate containing all the file ids, span stuff, ast ids. Then remove the dependency injection generics from tt and mbe~~
Fixes https://github.com/rust-lang/rust-analyzer/issues/10300
Fixes https://github.com/rust-lang/rust-analyzer/issues/15685
internal: simplify the removal of dulicate workspaces.
### Summary:
Refactoring the duplicate removal process for `workspaces` in `fetch_workspaces`.
### Changes Made:
Replaced `[].iter().enumerate().skip(...).filter_map(...)` with a more concise `[i+1..].positions(...)` provided by `itertools`, which enhances clarity without changing functionality
### Impact:
This change aims to enhance the duplicate removal process for `workspaces`. This change has been tested on my machine.
Please review and provide feedback. Thanks!
ensure renames happen after edit
This is a bugfix for an issue I fould while working on helix. Rust-analyzer currently always sends any filesystem edits (rename/file creation) before any other edits. When renaming a file that is also being edited that would mean that the edit would be discarded and therefore an incomplete/incorrect refactor (or even cause the creation of a new file in helix altough that is probably a pub on our side).
Example:
* create a module: `mod foo` containing a `pub sturct Bar;`
* reexport the struct uneder a different name in the `foo` module using a *fully qualified path*: `pub use crate::foo::Bar as Bar2`.
* rename the `foo` module to `foo2` using rust-analyzer
* obsereve that the path is not correctly updated (rust-analyer first sends a rename `foo.rs` to `foo2.rs` and then edits `foo.rs` after)
This PR fixes that issue by simply executing all rename operations after all edit operations (while still executing file creation operations first). I also added a testcase similar to the example above.
Relevent excerpt from the LSP standard:
> Since version 3.13.0 a workspace edit can contain resource operations (create, delete or rename files and folders) as well. If resource operations are present clients need to execute the operations in the order in which they are provided. So a workspace edit for example can consist of the following two changes: (1) create file a.txt and (2) a text document edit which insert text into file a.txt. An invalid sequence (e.g. (1) delete file a.txt and (2) insert text into file a.txt) will cause failure of the operation. How the client recovers from the failure is described by the client capability: workspace.workspaceEdit.failureHandling