Preserve argument indexes when inlining MIR
We store argument indexes on VarDebugInfo. Unlike the previous method of relying on the variable index to know whether a variable is an argument, this survives MIR inlining.
We also no longer check if var.source_info.scope is the outermost scope. When a function gets inlined, the arguments to the inner function will no longer be in the outermost scope. What we care about though is whether they were in the outermost scope prior to inlining, which we know by whether we assigned an argument index.
Fixes#83217
I considered using `Option<NonZeroU16>` instead of `Option<u16>` to store the index. I didn't because `TypeFoldable` isn't implemented for `NonZeroU16` and because it looks like due to padding, it currently wouldn't make any difference. But I indexed from 1 anyway because (a) it'll make it easier if later it becomes worthwhile to use a `NonZeroU16` and because the arguments were previously indexed from 1, so it made for a smaller change.
This is my first PR on rust-lang/rust, so apologies if I've gotten anything not quite right.
These don't optimize with debug assertions. For one of them, this
is due to the new alignment checks, for the other I'm not sure
what specifically blocks it.
We store argument indexes on VarDebugInfo. Unlike the previous method of
relying on the variable index to know whether a variable is an argument,
this survives MIR inlining.
We also no longer check if var.source_info.scope is the outermost scope.
When a function gets inlined, the arguments to the inner function will
no longer be in the outermost scope. What we care about though is
whether they were in the outermost scope prior to inlining, which we
know by whether we assigned an argument index.
Use SipHash-1-3 instead of SipHash-2-4 for StableHasher
Noticed this, and it seems easy and likely a perf win. IIUC we don't need DDOS resistance (just collision) so we ideally would have an even faster hash, but it's hard to beat this SipHash impl here, since it's been so highly tuned for the interface.
It wouldn't surprise me if there's some subtle reason changing this sucks, as it's so obvious it seems likely to have been done. Still, SipHash-1-3 seems to still have the guarantees StableHasher should need (and seemingly more), and is clearly less work. So it's worth a shot.
Not fully tested locally.
Validate `ignore` and `only` compiletest directive, and add human-readable ignore reasons
This PR adds strict validation for the `ignore` and `only` compiletest directives, failing if an unknown value is provided to them. Doing so uncovered 79 tests in `tests/ui` that had invalid directives, so this PR also fixes them.
Finally, this PR adds human-readable ignore reasons when tests are ignored due to `ignore` or `only` directives, like *"only executed when the architecture is aarch64"* or *"ignored when the operative system is windows"*. This was the original reason why I started working on this PR and #108659, as we need both of them for Ferrocene.
The PR is a draft because the code is extremely inefficient: it calls `rustc --print=cfg --target $target` for every rustc target (to gather the list of allowed ignore values), which on my system takes between 4s and 5s, and performs a lot of allocations of constant values. I'll fix both of them in the coming days.
r? `@ehuss`
Allow `transmute`s to produce `OperandValue`s instead of needing `alloca`s
LLVM can usually optimize these away, but especially for things like transmutes of newtypes it's silly to generate the `alloc`+`store`+`load` at all when it's actually a nop at LLVM level.
LLVM can usually optimize these away, but especially for things like transmutes of newtypes it's silly to generate the `alloc`+`store`+`load` at all when it's actually a nop at LLVM level.
`-Cdebuginfo=1` was never line tables only and
can't be due to backwards compatibility issues.
This was clarified and an option for line tables only
was added. Additionally an option for line info
directives only was added, which is well needed for
some targets. The debug info options should now
behave the same as clang's debug info options.
Insert alignment checks for pointer dereferences when debug assertions are enabled
Closes https://github.com/rust-lang/rust/issues/54915
- [x] Jake tells me this sounds like a place to use `MirPatch`, but I can't figure out how to insert a new basic block with a new terminator in the middle of an existing basic block, using `MirPatch`. (if nobody else backs up this point I'm checking this as "not actually a good idea" because the code looks pretty clean to me after rearranging it a bit)
- [x] Using `CastKind::PointerExposeAddress` is definitely wrong, we don't want to expose. Calling a function to get the pointer address seems quite excessive. ~I'll see if I can add a new `CastKind`.~ `CastKind::Transmute` to the rescue!
- [x] Implement a more helpful panic message like slice bounds checking.
r? `@oli-obk`
Upgrade to LLVM 16, again
Relative to the previous attempt in https://github.com/rust-lang/rust/pull/107224:
* Update to GCC 8.5 on dist-x86_64-linux, to avoid std::optional ABI-incompatibility between libstdc++ 7 and 8.
* Cherry-pick 96df79af02.
* Cherry-pick 6fc670e5e3.
r? `@cuviper`
Use poison instead of undef
In cases where it is legal, we should prefer poison values over undef values.
This replaces undef with poison for aggregate construction and for uninhabited types. There are more places where we can likely use poison, but I wanted to stay conservative to start with.
In particular the aggregate case is important for newer LLVM versions, which are not able to handle an undef base value during early optimization due to poison-propagation concerns.
r? `@cuviper`
Updates `interpret`, `codegen_ssa`, and `codegen_cranelift` to consume the new cast instead of the intrinsic.
Includes `CastTransmute` for custom MIR building, to be able to test the extra UB.
Remove the assume(!is_null) from Vec::as_ptr
At a guess, this code is leftover from LLVM was worse at keeping track of the niche information here. In any case, we don't need this anymore: Removing this `assume` doesn't get rid of the `nonnull` attribute on the return type.
Upgrade to LLVM 16
This updates Rust to LLVM 16. It also updates our host compiler for dist-x86_64-linux to LLVM 16. The reason for that is that Bolt from LLVM 15 is not capable of compiling LLVM 16 (https://github.com/llvm/llvm-project/issues/61114).
LLVM 16.0.0 has been [released](https://discourse.llvm.org/t/llvm-16-0-0-release/69326) on March 18, while Rust 1.70 will become stable on June 1.
Tested images: `dist-x86_64-linux`, `dist-riscv64-linux` (alt), `dist-x86_64-illumos`, `dist-various-1`, `dist-various-2`, `dist-powerpc-linux`, `wasm32`, `armhf-gnu`
Tested images until the usual IPv6 failures: `test-various`
inherit_overflow: adapt pattern to also work with v0 mangling
This test was failing under new-symbol-mangling = true. Adapt pattern to work in both cases.
Related to #106002 from December.
Wrap the whole LocalInfo in ClearCrossCrate.
MIR contains a lot of information about locals. The primary purpose of this information is the quality of borrowck diagnostics.
This PR aims to drop this information after MIR analyses are finished, ie. starting from post-cleanup runtime MIR.
In cases where it is legal, we should prefer poison values over
undef values.
This replaces undef with poison for aggregate construction and
for uninhabited types. There are more places where we can likely
use poison, but I wanted to stay conservative to start with.
In particular the aggregate case is important for newer LLVM
versions, which are not able to handle an undef base value during
early optimization due to poison-propagation concerns.
Ensure `ptr::read` gets all the same LLVM `load` metadata that dereferencing does
I was looking into `array::IntoIter` optimization, and noticed that it wasn't annotating the loads with `noundef` for simple things like `array::IntoIter<i32, N>`. Trying to narrow it down, it seems that was because `MaybeUninit::assume_init_read` isn't marking the load as initialized (<https://rust.godbolt.org/z/Mxd8TPTnv>), which is unfortunate since that's basically its reason to exist.
The root cause is that `ptr::read` is currently implemented via the *untyped* `copy_nonoverlapping`, and thus the `load` doesn't get any type-aware metadata: no `noundef`, no `!range`. This PR solves that by lowering `ptr::read(p)` to `copy *p` in MIR, for which the backends already do the right thing.
Fortuitiously, this also improves the IR we give to LLVM for things like `mem::replace`, and fixes a couple of long-standing bugs where `ptr::read` on `Copy` types was worse than `*`ing them.
Zulip conversation: <https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Move.20array.3A.3AIntoIter.20to.20ManuallyDrop/near/341189936>
cc `@erikdesjardins` `@JakobDegen` `@workingjubilee` `@the8472`
Fixes#106369Fixes#73258
Move `Option::as_slice` to an always-sound implementation
This approach depends on CSE to not have any branches or selects when the guessed offset is correct -- which it always will be right now -- but to also be *sound* (just less efficient) if the layout algorithms change such that the guess is incorrect.
The codegen test confirms that CSE handles this as expected, leaving the optimal codegen.
cc JakobDegen #108545