libfoo.a -> foo.lib
In order to not cause conflicts, changes the DLL import library name
foo.lib -> foo.dll.lib
Fixes https://github.com/rust-lang/rust/issues/29508
Because this changes output filenames this is a [breaking-change]
Signed-off-by: Peter Atashian <retep998@gmail.com>
This PR changes the `emit_opaque` and `read_opaque` methods in the RBML library to use a space-efficient binary encoder that does not emit any tags and uses the LEB128 variable-length integer format for all numbers it emits.
The space savings are nice, albeit a bit underwhelming, especially for dynamic libraries where metadata is already compressed.
| RLIBs | NEW | OLD |
|--------------|--------|-----------|
|libstd | 8.8 MB | 10.5 MB |
|libcore |15.6 MB | 19.7 MB |
|libcollections| 3.7 MB | 4.8 MB |
|librustc |34.0 MB | 37.8 MB |
|libsyntax |28.3 MB | 32.1 MB |
| SOs | NEW | OLD |
|---------------|-----------|--------|
| libstd | 4.8 MB | 5.1 MB |
| librustc | 8.6 MB | 9.2 MB |
| libsyntax | 7.8 MB | 8.4 MB |
At least this should make up for the size increase caused recently by also storing MIR in crate metadata.
Can this be a breaking change for anyone?
cc @rust-lang/compiler
This fixes a bug in which unused imports can get wrongly marked as used when checking for unused qualifications in `resolve_path` (issue #30078), and it removes unused imports that were previously undetected because of the bug.
Ensure borrows of fn/closure params do not outlive invocations.
Does this by adding a new CallSiteScope to the region (or rather code extent) hierarchy, which outlives even the ParameterScope (which in turn outlives the DestructionScope of a fn/closure's body).
Fix#29793
r? @nikomatsakis
We can now handle name resolution errors and get past type checking (if we're a bit lucky). This is the first step towards doing code completion for partial programs (we need error recovery in the parser and early access to save-analysis).
resolve_lifetime.rs: Switch from BlockScope to FnScope in ScopeChain
construction. Lifetimes introduced by a fn signature are scoped to the
call-site for that fn. (Note `add_scope_and_walk_fn` must only add
FnScope for the walk of body, *not* of the fn signature.)
region.rs: Introduce new CodeExtentData::CallSiteScope variant. Use
CodeExtentData as the cx.parent, rather than just a NodeId. Change
DestructionScopeData to CallSiteScopeData.
regionck.rs: Thread call_site_scope via Rcx; constrain fn return
values.
(update; incorporated review feedback from niko.)
With this commit, metadata encoding and decoding can make use of thread-local encoding and decoding contexts. These allow implementers of `serialize::Encodable` and `Decodable` to access information and
datastructures that would otherwise not be available to them. For example, we can automatically translate def-id and span information during decoding because the decoding context knows which crate the data is decoded from. Or it allows to make `ty::Ty` decodable because the context has access to the `ty::ctxt` that is needed for creating `ty::Ty` instances.
Some notes:
- `tls::with_encoding_context()` and `tls::with_decoding_context()` (as opposed to their unsafe versions) try to prevent the TLS data getting out-of-sync by making sure that the encoder/decoder passed in is actually the same as the one stored in the context. This should prevent accidentally reading from the wrong decoder.
- There are no real tests in this PR. I had a unit tests for some of the core aspects of the TLS implementation but it was kind of brittle, a lot of code for mocking `ty::ctxt`, `crate_metadata`, etc and did actually test not so much. The code will soon be tested by the first incremental compilation auto-tests that rely on MIR being properly serialized. However, if people think that some tests should be added before this can land, I'll try to provide some that make sense.
r? @nikomatsakis
With this commit, metadata encoding and decoding can make use of
thread-local encoding and decoding contexts. These allow implementers
of serialize::Encodable and Decodable to access information and
datastructures that would otherwise not be available to them. For
example, we can automatically translate def-id and span information
during decoding because the decoding context knows which crate the
data is decoded from. Or it allows to make ty::Ty decodable because
the context has access to the ty::ctxt that is needed for creating
ty::Ty instances.
I've measured the time/memory consumption before and after - the difference is lost in statistical noise, so it's mostly a code simplification.
Sizes of `enum`s are not affected.
r? @nrc
I wonder if AST/HIR visitors could run faster if `P`s are systematically removed (except for cases where they control `enum` sizes). Theoretically they should.
Remaining unnecessary `P`s can't be easily removed because many folders accept `P<X>`s as arguments, but these folders can be converted to accept `X`s instead without loss of efficiency.
When I have a mood for some mindless refactoring again, I'll probably try to convert the folders, remove remaining `P`s and measure again.
This commit is the standard API stabilization commit for the 1.6 release cycle.
The list of issues and APIs below have all been through their cycle-long FCP and
the libs team decisions are listed below
Stabilized APIs
* `Read::read_exact`
* `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`)
* libcore -- this was a bit of a nuanced stabilization, the crate itself is now
marked as `#[stable]` and the methods appearing via traits for primitives like
`char` and `str` are now also marked as stable. Note that the extension traits
themeselves are marked as unstable as they're imported via the prelude. The
`try!` macro was also moved from the standard library into libcore to have the
same interface. Otherwise the functions all have copied stability from the
standard library now.
* The `#![no_std]` attribute
* `fs::DirBuilder`
* `fs::DirBuilder::new`
* `fs::DirBuilder::recursive`
* `fs::DirBuilder::create`
* `os::unix::fs::DirBuilderExt`
* `os::unix::fs::DirBuilderExt::mode`
* `vec::Drain`
* `vec::Vec::drain`
* `string::Drain`
* `string::String::drain`
* `vec_deque::Drain`
* `vec_deque::VecDeque::drain`
* `collections::hash_map::Drain`
* `collections::hash_map::HashMap::drain`
* `collections::hash_set::Drain`
* `collections::hash_set::HashSet::drain`
* `collections::binary_heap::Drain`
* `collections::binary_heap::BinaryHeap::drain`
* `Vec::extend_from_slice` (renamed from `push_all`)
* `Mutex::get_mut`
* `Mutex::into_inner`
* `RwLock::get_mut`
* `RwLock::into_inner`
* `Iterator::min_by_key` (renamed from `min_by`)
* `Iterator::max_by_key` (renamed from `max_by`)
Deprecated APIs
* `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`)
* `OsString::from_bytes`
* `OsStr::to_cstring`
* `OsStr::to_bytes`
* `fs::walk_dir` and `fs::WalkDir`
* `path::Components::peek`
* `slice::bytes::MutableByteVector`
* `slice::bytes::copy_memory`
* `Vec::push_all` (renamed to `extend_from_slice`)
* `Duration::span`
* `IpAddr`
* `SocketAddr::ip`
* `Read::tee`
* `io::Tee`
* `Write::broadcast`
* `io::Broadcast`
* `Iterator::min_by` (renamed to `min_by_key`)
* `Iterator::max_by` (renamed to `max_by_key`)
* `net::lookup_addr`
New APIs (still unstable)
* `<[T]>::sort_by_key` (added to mirror `min_by_key`)
Closes#27585Closes#27704Closes#27707Closes#27710Closes#27711Closes#27727Closes#27740Closes#27744Closes#27799Closes#27801
cc #27801 (doesn't close as `Chars` is still unstable)
Closes#28968
The local item-path includes the local crates path to the extern crate
declaration which breaks cross-crate rustdoc links if the extern crate
is not linked into the crate root or renamed via `extern foo as bar`.