This commit removes all the old casting/generic traits from `std::num` that are
no longer in use by the standard library. This additionally removes the old
`strconv` module which has not seen much use in quite a long time. All generic
functionality has been supplanted with traits in the `num` crate and the
`strconv` module is supplanted with the [rust-strconv crate][rust-strconv].
[rust-strconv]: https://github.com/lifthrasiir/rust-strconv
This is a breaking change due to the removal of these deprecated crates, and the
alternative crates are listed above.
[breaking-change]
This commit stabilizes a few remaining bits of the `io::Error` type:
* The `Error::new` method is now stable. The last `detail` parameter was removed
and the second `desc` parameter was generalized to `E: Into<Box<Error>>` to
allow creating an I/O error from any form of error. Currently there is no form
of downcasting, but this will be added in time.
* An implementation of `From<&str> for Box<Error>` was added to liballoc to
allow construction of errors from raw strings.
* The `Error::raw_os_error` method was stabilized as-is.
* Trait impls for `Clone`, `Eq`, and `PartialEq` were removed from `Error` as it
is not possible to use them with trait objects.
This is a breaking change due to the modification of the `new` method as well as
the removal of the trait implementations for the `Error` type.
[breaking-change]
This commit stabilizes the `std::num` module:
* The `Int` and `Float` traits are deprecated in favor of (1) the
newly-added inherent methods and (2) the generic traits available in
rust-lang/num.
* The `Zero` and `One` traits are reintroduced in `std::num`, which
together with various other traits allow you to recover the most
common forms of generic programming.
* The `FromStrRadix` trait, and associated free function, is deprecated
in favor of inherent implementations.
* A wide range of methods and constants for both integers and floating
point numbers are now `#[stable]`, having been adjusted for integer
guidelines.
* `is_positive` and `is_negative` are renamed to `is_sign_positive` and
`is_sign_negative`, in order to address #22985
* The `Wrapping` type is moved to `std::num` and stabilized;
`WrappingOps` is deprecated in favor of inherent methods on the
integer types, and direct implementation of operations on
`Wrapping<X>` for each concrete integer type `X`.
Closes#22985Closes#21069
[breaking-change]
r? @alexcrichton
This commit stabilizes the `std::num` module:
* The `Int` and `Float` traits are deprecated in favor of (1) the
newly-added inherent methods and (2) the generic traits available in
rust-lang/num.
* The `Zero` and `One` traits are reintroduced in `std::num`, which
together with various other traits allow you to recover the most
common forms of generic programming.
* The `FromStrRadix` trait, and associated free function, is deprecated
in favor of inherent implementations.
* A wide range of methods and constants for both integers and floating
point numbers are now `#[stable]`, having been adjusted for integer
guidelines.
* `is_positive` and `is_negative` are renamed to `is_sign_positive` and
`is_sign_negative`, in order to address #22985
* The `Wrapping` type is moved to `std::num` and stabilized;
`WrappingOps` is deprecated in favor of inherent methods on the
integer types, and direct implementation of operations on
`Wrapping<X>` for each concrete integer type `X`.
Closes#22985Closes#21069
[breaking-change]
This functions swaps the order of arguments to a few functions that previously
took (output, input) parameters, but now take (input, output) parameters (in
that order).
The affected functions are:
* ptr::copy
* ptr::copy_nonoverlapping
* slice::bytes::copy_memory
* intrinsics::copy
* intrinsics::copy_nonoverlapping
Closes#22890
[breaking-change]
This permits all coercions to be performed in casts, but adds lints to warn in those cases.
Part of this patch moves cast checking to a later stage of type checking. We acquire obligations to check casts as part of type checking where we previously checked them. Once we have type checked a function or module, then we check any cast obligations which have been acquired. That means we have more type information available to check casts (this was crucial to making coercions work properly in place of some casts), but it means that casts cannot feed input into type inference.
[breaking change]
* Adds two new lints for trivial casts and trivial numeric casts, these are warn by default, but can cause errors if you build with warnings as errors. Previously, trivial numeric casts and casts to trait objects were allowed.
* The unused casts lint has gone.
* Interactions between casting and type inference have changed in subtle ways. Two ways this might manifest are:
- You may need to 'direct' casts more with extra type information, for example, in some cases where `foo as _ as T` succeeded, you may now need to specify the type for `_`
- Casts do not influence inference of integer types. E.g., the following used to type check:
```
let x = 42;
let y = &x as *const u32;
```
Because the cast would inform inference that `x` must have type `u32`. This no longer applies and the compiler will fallback to `i32` for `x` and thus there will be a type error in the cast. The solution is to add more type information:
```
let x: u32 = 42;
let y = &x as *const u32;
```
This changes the type of some public constants/statics in libunicode.
Notably some `&'static &'static [(char, char)]` have changed
to `&'static [(char, char)]`. The regexp crate seems to be the
sole user of these, yet this is technically a [breaking-change]
Previously every auto-serialized tags are strongly typed. However
this is not strictly required, and instead it can be exploited
to provide the optimal encoding for smaller integers. This commit
repurposes `EsI8`/`EsU8` through `EsI64`/`EsU64` tags to represent
*any* integers with given ranges: It is now possible to encode
`42u64` as two bytes `EsU8 0x2a`, for example.
There are some limitations:
* It does not apply to non-auto-serialized tags for obvious reasons.
Fortunately, we have already eliminated the biggest source of
such tag in favor of auto-serialized tags: `tag_table_id`.
* Bigger tags cannot be used to represent smaller types.
* Signed tags and unsigned tags do not mix.
We try to move the data when the length can be encoded in
the much smaller number of bytes. This interferes with indices and
type abbreviations however, so this commit introduces a public
interface to get and mark a "stable" (i.e. not affected by
relaxation) position of the current pointer.
The relaxation logic only moves a small data, currently at most
256 bytes, as moving the data can be costly. There might be
further opportunities to allow more relaxation by moving fields
around, which I didn't seriously try.
They replace the existing `EsEnumVid`, `EsVecLen` and `EsMapLen`
tags altogether; the meaning of them can be easily inferred
from the enclosing tag. It also has an added benefit of
encodings for smaller variant ids or lengths being more compact
(5 bytes to 2 bytes).
For the reference, while it is designed to be selectively enabled,
it was essentially enabled throughout every snapshot and nightly
as far as I can tell. This makes the usefulness of `EsLabel` itself
questionable, as it was quite rare that `EsLabel` broke the build.
It had consumed about 20~30% of metadata (!) and so this should be
a huge win.
It doesn't serve any useful purpose. It *might* be useful when
there are some tags that are generated by `Encodable` and
not delimited by any tags, but IIUC it's not the case.
Previous:
<-------------------- len1 ------------------->
EsEnum <len1> EsEnumVid <vid> EsEnumBody <len2> <arg1> <arg2>
<--- len2 -->
Now:
<----------- len1 ---------->
EsEnum <len1> EsEnumVid <vid> <arg1> <arg2>
Many auto-serialization tags are fixed-size (note: many ordinary
tags are also fixed-size but for now this commit ignores them),
so having an explicit length is a waste. This moves any
auto-serialization tags with an implicit length before other tags,
so a test for them is easy. A preliminary experiment shows this
has at least 1% gain over the status quo.
EBML tags are encoded in a variable-length unsigned int (vuint),
which is clever but causes some tags to be encoded in two bytes
while there are really about 180 tags or so. Assuming that there
wouldn't be, say, over 1,000 tags in the future, we can use much
more efficient encoding scheme. The new scheme should support
at most 4,096 tags anyway.
This also flattens a scattered tag namespace (did you know that
0xa9 is followed by 0xb0?) and makes a room for autoserialized tags
in 0x00 through 0x1f.
This changes the type of some public constants/statics in libunicode.
Notably some `&'static &'static [(char, char)]` have changed
to `&'static [(char, char)]`. The regexp crate seems to be the
sole user of these, yet this is technically a [breaking-change]
This commit renames the features for the `std::old_io` and `std::old_path`
modules to `old_io` and `old_path` to help facilitate migration to the new APIs.
This is a breaking change as crates which mention the old feature names now need
to be renamed to use the new feature names.
[breaking-change]
There are a number of holes that the stability lint did not previously cover,
including:
* Types
* Bounds on type parameters on functions and impls
* Where clauses
* Imports
* Patterns (structs and enums)
These holes have all been fixed by overriding the `visit_path` function on the
AST visitor instead of a few specialized cases. This change also necessitated a
few stability changes:
* The `collections::fmt` module is now stable (it was already supposed to be).
* The `thread_local:👿:Key` type is now stable (it was already supposed to
be).
* The `std::rt::{begin_unwind, begin_unwind_fmt}` functions are now stable.
These are required via the `panic!` macro.
* The `std::old_io::stdio::{println, println_args}` functions are now stable.
These are required by the `print!` and `println!` macros.
* The `ops::{FnOnce, FnMut, Fn}` traits are now `#[stable]`. This is required to
make bounds with these traits stable. Note that manual implementations of
these traits are still gated by default, this stability only allows bounds
such as `F: FnOnce()`.
Additionally, the compiler now has special logic to ignore its own generated
`__test` module for the `--test` harness in terms of stability.
Closes#8962Closes#16360Closes#20327
[breaking-change]