Lazy type-alias-impl-trait
Previously opaque types were processed by
1. replacing all mentions of them with inference variables
2. memorizing these inference variables in a side-table
3. at the end of typeck, resolve the inference variables in the side table and use the resolved type as the hidden type of the opaque type
This worked okayish for `impl Trait` in return position, but required lots of roundabout type inference hacks and processing.
This PR instead stops this process of replacing opaque types with inference variables, and just keeps the opaque types around.
Whenever an opaque type `O` is compared with another type `T`, we make the comparison succeed and record `T` as the hidden type. If `O` is compared to `U` while there is a recorded hidden type for it, we grab the recorded type (`T`) and compare that against `U`. This makes implementing
* https://github.com/rust-lang/rfcs/pull/2515
much simpler (previous attempts on the inference based scheme were very prone to ICEs and general misbehaviour that was not explainable except by random implementation defined oddities).
r? `@nikomatsakis`
fixes#93411fixes#88236
by using an opaque type obligation to bubble up comparisons between opaque types and other types
Also uses proper obligation causes so that the body id works, because out of some reason nll uses body ids for logic instead of just diagnostics.
- Also rename a trivial_const_drop to match style of other functions in
the util module.
- Also add a test for `const Drop` that doesn't depend on a `~const`
bound.
- Also comment a bit why we remove the const bound during dropck impl
check.
Remove deprecated LLVM-style inline assembly
The `llvm_asm!` was deprecated back in #87590 1.56.0, with intention to remove
it once `asm!` was stabilized, which already happened in #91728 1.59.0. Now it
is time to remove `llvm_asm!` to avoid continued maintenance cost.
Closes#70173.
Closes#92794.
Closes#87612.
Closes#82065.
cc `@rust-lang/wg-inline-asm`
r? `@Amanieu`
Error when selected impl is not const in constck
Catches bad things when checking a `default_method_body_is_const` body, such as:
```rust
self.map(/* .. */).is_sorted();
```
When `Map` does not yet have a `const` `impl` for `Iterator`.
r? ```@oli-obk```
Remove `NullOp::Box`
Follow up of #89030 and MCP rust-lang/compiler-team#460.
~1 month later nothing seems to be broken, apart from a small regression that #89332 (1aac85bb716c09304b313d69d30d74fe7e8e1a8e) shows could be regained by remvoing the diverging path, so it shall be safe to continue and remove `NullOp::Box` completely.
r? `@jonas-schievink`
`@rustbot` label T-compiler
The `AggregateKind` enum ends up in the final mir `Body`. Currently,
any changes to `AdtDef` (regardless of how significant they are)
will legitimately cause the overall result of `optimized_mir` to change,
invalidating any codegen re-use involving that mir.
This will get worse once we start hashing the `Span` inside `FieldDef`
(which is itself contained in `AdtDef`).
To try to reduce these kinds of invalidations, this commit changes
`AggregateKind::Adt` to store just the `DefId`, instead of the full
`AdtDef`. This allows the result of `optimized_mir` to be unchanged
if the `AdtDef` changes in a way that doesn't actually affect any
of the MIR we build.
Add a MIR pass manager (Taylor's Version)
The final draft of #91386 and #77665.
While the compile-time constraints in #91386 are cool, I decided on a more minimal approach for now. I want to explore phase constraints and maybe relative-ordering constraints in the future, though. This should preserve existing behavior **exactly** (please let me know if it doesn't) while making the following changes to the way we organize things today:
- Each `MirPhase` now corresponds to a single MIR pass. `run_passes` is not responsible for listing the correct MIR phase.
- `run_passes` no longer silently skips passes if the declared MIR phase is greater than or equal to the body's. This has bitten me multiple times. If you want this behavior, you can always branch on `body.phase` yourself.
- If your pass is solely to emit errors, you can use the `MirLint` interface instead, which gets a shared reference to `Body` instead of a mutable one. By differentiating the two, I hope to make it clearer in the short term where lints belong in the pipeline. In the long term perhaps we could enforce this at compile-time?
- MIR is no longer dumped for passes that aren't enabled, or for lints.
I tried to check that `-Zvalidate` still works correctly, since the MIR phase is now updated as soon as the associated pass is done, instead of at the end of all the passes in `run_passes`. However, it looks like `-Zvalidate` is broken with current nightlies anyways 😢 (it spits out a bunch of errors).
cc `@oli-obk` `@wesleywiser`
r? rust-lang/wg-mir-opt
Rollup of 12 pull requests
Successful merges:
- #89954 (Fix legacy_const_generic doc arguments display)
- #91321 (Handle placeholder regions in NLL type outlive constraints)
- #91329 (Fix incorrect usage of `EvaluatedToOk` when evaluating `TypeOutlives`)
- #91364 (Improve error message for incorrect field accesses through raw pointers)
- #91387 (Clarify and tidy up explanation of E0038)
- #91410 (Move `#![feature(const_precise_live_drops)]` checks earlier in the pipeline)
- #91435 (Improve diagnostic for missing half of binary operator in `if` condition)
- #91444 (disable tests in Miri that take too long)
- #91457 (Add additional test from rust issue number 91068)
- #91460 (Document how `last_os_error` should be used)
- #91464 (Document file path case sensitivity)
- #91466 (Improve the comments in `Symbol::interner`.)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Move `#![feature(const_precise_live_drops)]` checks earlier in the pipeline
Should mitigate the issues found during MCP on #73255.
Once this is done, we should clean up the queries a bit, since I think `mir_drops_elaborated_and_const_checked` can be merged back into `mir_promoted`.
Fixes#90770.
cc ``@rust-lang/wg-const-eval``
r? ``@nikomatsakis`` (since they reviewed #71824)
Cleanup: Eliminate ConstnessAnd
This is almost a behaviour-free change and purely a refactoring. "almost" because we appear to be using the wrong ParamEnv somewhere already, and this is now exposed by failing a test using the unstable `~const` feature.
We most definitely need to review all `without_const` and at some point should probably get rid of many of them by using `TraitPredicate` instead of `TraitRef`.
This is a continuation of https://github.com/rust-lang/rust/pull/90274.
r? `@oli-obk`
cc `@spastorino` `@ecstatic-morse`
Perform Sync check on static items in wf-check instead of during const checks
r? `@RalfJung`
This check is solely happening on the signature of the static item and not on its body, therefor it belongs into wf-checking instead of const checking.
Implement `clone_from` for `State`
Data flow engine uses `clone_from` for domain values. Providing an
implementation of `clone_from` will avoid some intermediate memory
allocations.
Extracted from #90413.
r? `@oli-obk`
Refactor single variant `Candidate` enum into a struct
`Candidate` enum has only a single `Ref` variant. Refactor it into a
struct and reduce overall indentation of the code by two levels.
No functional changes.
Stabilize `const_raw_ptr_deref` for `*const T`
This stabilizes dereferencing immutable raw pointers in const contexts.
It does not stabilize `*mut T` dereferencing. This is behind the
same feature gate as mutable references.
closes https://github.com/rust-lang/rust/issues/51911
This stabilizes dereferencing immutable raw pointers in const contexts.
It does not stabilize `*mut T` dereferencing. This is placed behind the
`const_raw_mut_ptr_deref` feature gate.
`Candidate` enum has only a single `Ref` variant. Refactor it into a
struct and reduce overall indentation of the code by two levels.
No functional changes.
The exact set of permissions granted when forming a raw reference is
currently undecided https://github.com/rust-lang/rust/issues/56604.
To avoid presupposing any particular outcome, adjust the const
qualification to be compatible with decision where raw reference
constructed from `addr_of!` grants mutable access.
Use type based qualification for unions
Union field access is currently qualified based on the qualification of
a value previously assigned to the union. At the same time, every union
access transmutes the content of the union, which might result in a
different qualification.
For example, consider constants A and B as defined below, under the
current rules neither contains interior mutability, since a value used
in the initial assignment did not contain `UnsafeCell` constructor.
```rust
#![feature(untagged_unions)]
union U { i: u32, c: std::cell::Cell<u32> }
const A: U = U { i: 0 };
const B: std::cell::Cell<u32> = unsafe { U { i: 0 }.c };
```
To avoid the issue, the changes here propose to consider the content of
a union as opaque and use type based qualification for union types.
Fixes#90268.
`@rust-lang/wg-const-eval`
Consider indirect mutation during const qualification dataflow
Previously a local would be qualified if either one of two separate data
flow computations indicated so. First determined if a local could
contain the qualif, but ignored any forms of indirect mutation. Second
determined if a local could be mutably borrowed (and so indirectly
mutated), but which in turn ignored the qualif.
The end result was incorrect because the effect of indirect mutation was
effectivelly ignored in the all but the final stage of computation.
In the new implementation the indirect mutation is directly incorporated
into the qualif data flow. The local variable becomes immediately
qualified once it is mutably borrowed and borrowed place type can
contain the qualif.
In general we will now reject additional programs, program that were
prevously unintentionally accepted.
There are also some cases which are now accepted but were previously
rejected, because previous implementation didn't consider whether
borrowed place could have the qualif under the consideration.
Fixes#90124.
r? `@ecstatic-morse`