This transitions the standard library's `thread_local!` macro to use the
freshly-added and gated `#[cfg(target_thread_local)]` attribute. This greatly
simplifies the `#[cfg]` logic in play here, but requires that the standard
library expose both the OS and ELF TLS implementation modules as unstable
implementation details.
The implementation details were shuffled around a bit but end up generally
compiling to the same thing.
Closes#26581 (this supersedes the need for the option)
Closes#27057 (this also starts ignoring the option)
This change modifies the feature gating of special `#[cfg]` attributes to not
require a `#![feature]` directive in the crate-of-use if the source of the macro
was declared with `#[allow_internal_unstable]`. This enables the standard
library's macro for `thread_local!` to make use of the
`#[cfg(target_thread_local)]` attribute despite it being feature gated (e.g.
it's a hidden implementation detail).
Currently the standard library has some pretty complicated logic to detect
whether #[thread_local] should be used or whether it's supported. This is also
unfortunately not quite true for OSX where not all versions support
the #[thread_local] attribute (only 10.7+ does). Compiling code for OSX 10.6 is
typically requested via the MACOSX_DEPLOYMENT_TARGET environment variable (e.g.
the linker recognizes this), but the standard library unfortunately does not
respect this.
This commit updates the compiler to add a `target_thread_local` cfg annotation
if the platform being targeted supports the `#[thread_local]` attribute. This is
feature gated for now, and it is only true on non-aarch64 Linux and 10.7+ OSX
(e.g. what the module already does today). Logic has also been added to parse
the deployment target environment variable.
This PR is a rebase of the original PR by @eddyb https://github.com/rust-lang/rust/pull/21836 with some unrebasable parts manually reapplied, feature gate added + type equality restriction added as described below.
This implementation is partial because the type equality restriction is applied to all type ascription expressions and not only those in lvalue contexts. Thus, all difficulties with detection of these contexts and translation of coercions having effect in runtime are avoided.
So, you can't write things with coercions like `let slice = &[1, 2, 3]: &[u8];`. It obviously makes type ascription less useful than it should be, but it's still much more useful than not having type ascription at all.
In particular, things like `let v = something.iter().collect(): Vec<_>;` and `let u = t.into(): U;` work as expected and I'm pretty happy with these improvements alone.
Part of https://github.com/rust-lang/rust/issues/23416
This commit is the standard API stabilization commit for the 1.6 release cycle.
The list of issues and APIs below have all been through their cycle-long FCP and
the libs team decisions are listed below
Stabilized APIs
* `Read::read_exact`
* `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`)
* libcore -- this was a bit of a nuanced stabilization, the crate itself is now
marked as `#[stable]` and the methods appearing via traits for primitives like
`char` and `str` are now also marked as stable. Note that the extension traits
themeselves are marked as unstable as they're imported via the prelude. The
`try!` macro was also moved from the standard library into libcore to have the
same interface. Otherwise the functions all have copied stability from the
standard library now.
* The `#![no_std]` attribute
* `fs::DirBuilder`
* `fs::DirBuilder::new`
* `fs::DirBuilder::recursive`
* `fs::DirBuilder::create`
* `os::unix::fs::DirBuilderExt`
* `os::unix::fs::DirBuilderExt::mode`
* `vec::Drain`
* `vec::Vec::drain`
* `string::Drain`
* `string::String::drain`
* `vec_deque::Drain`
* `vec_deque::VecDeque::drain`
* `collections::hash_map::Drain`
* `collections::hash_map::HashMap::drain`
* `collections::hash_set::Drain`
* `collections::hash_set::HashSet::drain`
* `collections::binary_heap::Drain`
* `collections::binary_heap::BinaryHeap::drain`
* `Vec::extend_from_slice` (renamed from `push_all`)
* `Mutex::get_mut`
* `Mutex::into_inner`
* `RwLock::get_mut`
* `RwLock::into_inner`
* `Iterator::min_by_key` (renamed from `min_by`)
* `Iterator::max_by_key` (renamed from `max_by`)
Deprecated APIs
* `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`)
* `OsString::from_bytes`
* `OsStr::to_cstring`
* `OsStr::to_bytes`
* `fs::walk_dir` and `fs::WalkDir`
* `path::Components::peek`
* `slice::bytes::MutableByteVector`
* `slice::bytes::copy_memory`
* `Vec::push_all` (renamed to `extend_from_slice`)
* `Duration::span`
* `IpAddr`
* `SocketAddr::ip`
* `Read::tee`
* `io::Tee`
* `Write::broadcast`
* `io::Broadcast`
* `Iterator::min_by` (renamed to `min_by_key`)
* `Iterator::max_by` (renamed to `max_by_key`)
* `net::lookup_addr`
New APIs (still unstable)
* `<[T]>::sort_by_key` (added to mirror `min_by_key`)
Closes#27585Closes#27704Closes#27707Closes#27710Closes#27711Closes#27727Closes#27740Closes#27744Closes#27799Closes#27801
cc #27801 (doesn't close as `Chars` is still unstable)
Closes#28968
See https://github.com/rust-lang/rfcs/pull/16 and https://github.com/rust-lang/rust/issues/15701
- Added syntax support for attributes on expressions and all syntax nodes in statement position.
- Extended `#[cfg]` folder to allow removal of statements, and
of expressions in optional positions like expression lists and trailing
block expressions.
- Extended lint checker to recognize lint levels on expressions and
locals.
- As per RFC, attributes are not yet accepted on `if` expressions.
Examples:
```rust
let x = y;
{
...
}
assert_eq!((1, #[cfg(unset)] 2, 3), (1, 3));
let FOO = 0;
```
Implementation wise, there are a few rough corners and open questions:
- The parser work ended up a bit ugly.
- The pretty printer change was based mostly on guessing.
- Similar to the `if` case, there are some places in the grammar where a new `Expr` node starts,
but where it seemed weird to accept attributes and hence the parser doesn't. This includes:
- const expressions in patterns
- in the middle of an postfix operator chain (that is, after `.`, before indexing, before calls)
- on range expressions, since `#[attr] x .. y` parses as `(#[attr] x) .. y`, which is inconsistent with
`#[attr] .. y` which would parse as `#[attr] (.. y)`
- Attributes are added as additional `Option<Box<Vec<Attribute>>>` fields in expressions and locals.
- Memory impact has not been measured yet.
- A cfg-away trailing expression in a block does not currently promote the previous `StmtExpr` in a block to a new trailing expr. That is to say, this won't work:
```rust
let x = {
#[cfg(foo)]
Foo { data: x }
#[cfg(not(foo))]
Foo { data: y }
};
```
- One-element tuples can have their inner expression removed to become Unit, but just Parenthesis can't. Eg, `(#[cfg(unset)] x,) == ()` but `(#[cfg(unset)] x) == error`. This seemed reasonable to me since tuples and unit are type constructors, but could probably be argued either way.
- Attributes on macro nodes are currently unconditionally dropped during macro expansion, which seemed fine since macro disappear at that point?
- Attributes on `ast::ExprParens` will be prepend-ed to the inner expression in the hir folder.
- The work on pretty printer tests for this did trigger, but not fix errors regarding macros:
- expression `foo![]` prints as `foo!()`
- expression `foo!{}` prints as `foo!()`
- statement `foo![];` prints as `foo!();`
- statement `foo!{};` prints as `foo!();`
- statement `foo!{}` triggers a `None` unwrap ICE.
This PR allows the constant evaluation of index operations on constant arrays and repeat expressions. This allows index expressions to appear in the expression path of the length expression of a repeat expression or an array type.
An example is
```rust
const ARR: [usize; 5] = [1, 2, 3, 4, 5];
const ARR2: [usize; ARR[1]] = [42, 99];
```
In most other locations llvm's const evaluator figures it out already. This is not specific to index expressions and could be remedied in the future.
This commit adds issue numbers to the vast majority of active feature
gates. The few that are left without issues are rustc/runtime-internal
features that are essentially private APIs.
Closes#28244
r? @huonw
This commit adds issue numbers to the vast majority of active feature
gates. The few that are left without issues are rustc/runtime-internal
features that are essentially private APIs.
Closes#28244
I needed it in `RawVec`, `Vec`, and `TypedArena` for `rustc` to
bootstrap; but of course that alone was not sufficient for `make
check`.
Later I added `unsafe_destructor_blind_to_params` to collections, in
particular `LinkedList` and `RawTable` (the backing representation for
`HashMap` and `HashSet`), to get the regression tests exercising
cyclic structure from PR #27185 building.
----
Note that the feature is `dropck_parametricity` (which is not the same
as the attribute's name). We will almost certainly vary our strategy
here in the future, so it makes some sense to have a not-as-ugly name
for the feature gate. (The attribute name was deliberately selected to
be ugly looking.)
Implement cannot-assume-parametricity (CAP) from RFC 1238, and add the
UGEH attribute.
----
Note that we check for the attribute attached to the dtor method, not
the Drop impl.
(This is just to match the specification of RFC and the tests; I am
not wedded to this approach.)
This PR removes random remaining `Ident`s outside of libsyntax and performs general cleanup
In particular, interfaces of `Name` and `Ident` are tidied up, `Name`s and `Ident`s being small `Copy` aggregates are always passed to functions by value, and `Ident`s are never used as keys in maps, because `Ident` comparisons are tricky.
Although this PR closes https://github.com/rust-lang/rust/issues/6993 there's still work related to it:
- `Name` can be made `NonZero` to compress numerous `Option<Name>`s and `Option<Ident>`s but it requires const unsafe functions.
- Implementation of `PartialEq` on `Ident` should be eliminated and replaced with explicit hygienic, non-hygienic or member-wise comparisons.
- Finally, large parts of AST can potentially be converted to `Name`s in the same way as HIR to clearly separate identifiers used in hygienic and non-hygienic contexts.
r? @nrc
This adds a new target property, `target_vendor`. It is to be be used as a matcher for conditional compilation. The vendor is part of the [autoconf target triple](http://llvm.org/docs/doxygen/html/classllvm_1_1Triple.html#details): `<arch><sub>-<vendor>-<os>-<env>`. `arch`, `target_os` and `target_env` are already supported by Rust.
This change was suggested in PR #28593. It enables conditional compilation based on the vendor. This is needed for the rumprun target, which needs to match against both, target_os and target_vendor.
The default value for `target_vendor` is "unknown", "apple" and "pc" are other common values.
Matching against the `target_vendor` is introduced behind the feature gate `#![feature(cfg_target_vendor)]`.
This is the first time I messed around with rustc internals. I just added the my code where I found the existing `target_*` variables, hopefully I haven't missed anything. Please review with care. :)
r? @alexcrichton
Make sure Name, SyntaxContext and Ident are passed by value
Make sure Idents don't serve as keys (or parts of keys) in maps, Ident comparison is not well defined
This adds a new target property, `target_vendor` which can be used as a
matcher for conditional compilation. The vendor is part of the autoconf
target triple: <arch><sub>-<vendor>-<os>-<env>
The default value for `target_vendor` is "unknown".
Matching against the `target_vendor` with `#[cfg]` is currently feature
gated as `cfg_target_vendor`.