Fix unsound `File` methods
This is a draft attempt to fix#81357. *EDIT*: this PR now tackles `read()`, `write()`, `read_at()`, `write_at()` and `read_buf`. Still needs more testing though.
cc `@jstarks,` can you confirm the the Windows team is ok with the Rust stdlib using `NtReadFile` and `NtWriteFile`?
~Also, I'm provisionally using `CancelIo` in a last ditch attempt to recover but I'm not sure that this is actually a good idea. Especially as getting into this state would be a programmer error so aborting the process is justified in any case.~ *EDIT*: removed, see comments.
With the updated libc, UNIX stack overflow handling in libstd can now
use the common `si_addr` accessor function, rather than attempting to
use a field from that name in `siginfo_t`. This simplifies the
collection of the fault address, particularly on platforms where that
data resides within a union in `siginfo_t`.
Windows: Synchronize asynchronous pipe reads and writes
On Windows, the pipes used for spawned processes are opened for asynchronous access but `read` and `write` are done using the standard methods that assume synchronous access. This means that the buffer (and variables on the stack) may be read/written to after the function returns.
This PR ensures reads/writes complete before returning. Note that this only applies to pipes we create and does not affect the standard file read/write methods.
Fixes#95411
libc::prctl and the prctl definitions in glibc, musl, and the kernel
headers are C variadic functions. Therefore, all the arguments (except
for the first) are untyped. It is only the Linux man page which says
that prctl takes 4 unsigned long arguments. I have no idea why it says
this.
In any case, the upshot is that we don't need to cast the pointer to an
integer and confuse Miri.
Handle rustc_const_stable attribute in library feature collector
The library feature collector in [compiler/rustc_passes/src/lib_features.rs](551b4fa395/compiler/rustc_passes/src/lib_features.rs) has only been looking at `#[stable(…)]`, `#[unstable(…)]`, and `#[rustc_const_unstable(…)]` attributes, while ignoring `#[rustc_const_stable(…)]`. The consequences of this were:
- When any const feature got stabilized (changing one or more `rustc_const_unstable` to `rustc_const_stable`), users who had previously enabled that unstable feature using `#![feature(…)]` would get told "unknown feature", rather than rustc's nicer "the feature … has been stable since … and no longer requires an attribute to enable".
This can be seen in the way that https://github.com/rust-lang/rust/pull/93957#issuecomment-1079794660 failed after rebase:
```console
error[E0635]: unknown feature `const_ptr_offset`
--> $DIR/offset_from_ub.rs:1:35
|
LL | #![feature(const_ptr_offset_from, const_ptr_offset)]
| ^^^^^^^^^^^^^^^^
```
- We weren't enforcing that a particular feature is either stable everywhere or unstable everywhere, and that a feature that has been stabilized has the same stabilization version everywhere, both of which we enforce for the other stability attributes.
This PR updates the library feature collector to handle `rustc_const_stable`, and fixes places in the standard library and test suite where `rustc_const_stable` was being used in a way that does not meet the rules for a stability attribute.
- Refine the "NaN as a special value" top level explanation of f32
- Refine `const NAN` docstring.
- Refine `fn is_sign_positive` and `fn is_sign_negative` docstrings.
- Refine `fn min` and `fn max` docstrings.
- Refine `fn trunc` docstrings.
- Refine `fn powi` docstrings.
- Refine `fn copysign` docstrings.
- Reword `NaN` and `NAN` as plain "NaN", unless they refer to the specific `const NAN`.
- Reword "a number" to `self` in function docstrings to clarify.
- Remove "Returns NAN if the number is NAN" as this is told to be the default behavior in the top explanation.
- Remove "propagating NaNs", as full propagation (preservation of payloads) is not guaranteed.
allow arbitrary inherent impls for builtin types in core
Part of https://github.com/rust-lang/compiler-team/issues/487. Slightly adjusted after some talks with `@m-ou-se` about the requirements of `t-libs-api`.
This adds a crate attribute `#![rustc_coherence_is_core]` which allows arbitrary impls for builtin types in core.
For other library crates impls for builtin types should be avoided if possible. We do have to allow the existing stable impls however. To prevent us from accidentally adding more of these in the future, there is a second attribute `#[rustc_allow_incoherent_impl]` which has to be added to **all impl items**. This only supports impls for builtin types but can easily be extended to additional types in a future PR.
This implementation does not check for overlaps in these impls. Perfectly checking that requires us to check the coherence of these incoherent impls in every crate, as two distinct dependencies may add overlapping methods. It should be easy enough to detect if it goes wrong and the attribute is only intended for use inside of std.
The first two commits are mostly unrelated cleanups.
Strict Provenance MVP
This patch series examines the question: how bad would it be if we adopted
an extremely strict pointer provenance model that completely banished all
int<->ptr casts.
The key insight to making this approach even *vaguely* pallatable is the
ptr.with_addr(addr) -> ptr
function, which takes a pointer and an address and creates a new pointer
with that address and the provenance of the input pointer. In this way
the "chain of custody" is completely and dynamically restored, making the
model suitable even for dynamic checkers like CHERI and Miri.
This is not a formal model, but lots of the docs discussing the model
have been updated to try to the *concept* of this design in the hopes
that it can be iterated on.
See #95228