Now that procedural macros can be implemented outside of the compiler,
it's more important to have a reasonable API to work with. Here are the
basic changes:
* Rename SyntaxExpanderTTTrait to MacroExpander, SyntaxExpanderTT to
BasicMacroExpander, etc. I think "procedural macro" is the right
term for these now, right? The other option would be SynExtExpander
or something like that.
* Stop passing the SyntaxContext to extensions. This was only ever used
by macro_rules, which doesn't even use it anymore. I can't think of
a context in which an external extension would need it, and removal
allows the API to be significantly simpler - no more
SyntaxExpanderTTItemExpanderWithoutContext wrappers to worry about.
Now that procedural macros can be implemented outside of the compiler,
it's more important to have a reasonable API to work with. Here are the
basic changes:
* Rename SyntaxExpanderTTTrait to MacroExpander, SyntaxExpanderTT to
BasicMacroExpander, etc. I think "procedural macro" is the right
term for these now, right? The other option would be SynExtExpander
or something like that.
* Stop passing the SyntaxContext to extensions. This was only ever used
by macro_rules, which doesn't even use it anymore. I can't think of
a context in which an external extension would need it, and removal
allows the API to be significantly simpler - no more
SyntaxExpanderTTItemExpanderWithoutContext wrappers to worry about.
They all have to go into a single module at the moment unfortunately.
Ideally, the logging macros would live in std::logging, condition! would
live in std::condition, format! in std::fmt, etc. However, this
introduces cyclic dependencies between those modules and the macros they
use which the current expansion system can't deal with. We may be able
to get around this by changing the expansion phase to a two-pass system
but that's for a later PR.
Closes#2247
cc #11763
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
A mutable and immutable borrow place some restrictions on what you can
with the variable until the borrow ends. This commit attempts to convey
to the user what those restrictions are. Also, if the original borrow is
a mutable borrow, the error message has been changed (more specifically,
i. "cannot borrow `x` as immutable because it is also borrowed as
mutable" and ii. "cannot borrow `x` as mutable more than once" have
been changed to "cannot borrow `x` because it is already borrowed as
mutable").
In addition, this adds a (custom) span note to communicate where the
original borrow ends.
```rust
fn main() {
match true {
true => {
let mut x = 1;
let y = &x;
let z = &mut x;
}
false => ()
}
}
test.rs:6:21: 6:27 error: cannot borrow `x` as mutable because it is already borrowed as immutable
test.rs:6 let z = &mut x;
^~~~~~
test.rs:5:21: 5:23 note: previous borrow of `x` occurs here; the immutable borrow prevents subsequent moves or mutable borrows of `x` until the borrow ends
test.rs:5 let y = &x;
^~
test.rs:7:10: 7:10 note: previous borrow ends here
test.rs:3 true => {
test.rs:4 let mut x = 1;
test.rs:5 let y = &x;
test.rs:6 let z = &mut x;
test.rs:7 }
^
```
```rust
fn foo3(t0: &mut &mut int) {
let t1 = &mut *t0;
let p: &int = &**t0;
}
fn main() {}
test.rs:3:19: 3:24 error: cannot borrow `**t0` because it is already borrowed as mutable
test.rs:3 let p: &int = &**t0;
^~~~~
test.rs:2:14: 2:22 note: previous borrow of `**t0` as mutable occurs here; the mutable borrow prevents subsequent moves, borrows, or modification of `**t0` until the borrow ends
test.rs:2 let t1 = &mut *t0;
^~~~~~~~
test.rs:4:2: 4:2 note: previous borrow ends here
test.rs:1 fn foo3(t0: &mut &mut int) {
test.rs:2 let t1 = &mut *t0;
test.rs:3 let p: &int = &**t0;
test.rs:4 }
^
```
For the "previous borrow ends here" note, if the span is too long (has too many lines), then only the first and last lines are printed, and the middle is replaced with dot dot dot:
```rust
fn foo3(t0: &mut &mut int) {
let t1 = &mut *t0;
let p: &int = &**t0;
}
fn main() {}
test.rs:3:19: 3:24 error: cannot borrow `**t0` because it is already borrowed as mutable
test.rs:3 let p: &int = &**t0;
^~~~~
test.rs:2:14: 2:22 note: previous borrow of `**t0` as mutable occurs here; the mutable borrow prevents subsequent moves, borrows, or modification of `**t0` until the borrow ends
test.rs:2 let t1 = &mut *t0;
^~~~~~~~
test.rs:7:2: 7:2 note: previous borrow ends here
test.rs:1 fn foo3(t0: &mut &mut int) {
...
test.rs:7 }
^
```
(Sidenote: the `span_end_note` currently also has issue #11715)
Renamed the ```invert()``` function in ```iter.rs``` to ```flip()```, from #10632
Also renamed the ```Invert<T>``` type to ```Flip<T>```.
Some related code comments changed. Documentation that I could find has
been updated, and all the instances I could locate where the
function/type were called have been updated as well.
This is my first contribution to Rust! Apologies in advance if I've snarfed the
PR process, I'm not used to rebase.
I initially had issues with the ```codegen``` section of the tests failing, however
the ```make check``` process is not reporting any failures at this time. I think
that was a local env issue more than me facerolling my changes. :)
This patchset consists of three parts:
- rustpkg doesn't guess crate version if it is not given by user.
- `rustpkg::version::Version` is replaced by `Option<~str>`.
It removes some semantic versioning portions which is not currently used.
(cc #8405 and #11396)
`rustpkg::crate_id::CrateId` is also replaced by `syntax::crateid::CrateId`.
- rustpkg now computes hash to find crate, instead of manual filename parse.
cc @metajack
Renamed the invert() function in iter.rs to flip().
Also renamed the Invert<T> type to Flip<T>.
Some related code comments changed. Documentation that I could find has
been updated, and all the instances I could locate where the
function/type were called have been updated as well.
A mutable and immutable borrow place some restrictions on what you can
with the variable until the borrow ends. This commit attempts to convey
to the user what those restrictions are. Also, if the original borrow is
a mutable borrow, the error message has been changed (more specifically,
i. "cannot borrow `x` as immutable because it is also borrowed as
mutable" and ii. "cannot borrow `x` as mutable more than once" have
been changed to "cannot borrow `x` because it is already borrowed as
mutable").
In addition, this adds a (custom) span note to communicate where the
original borrow ends.
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
This means that compilation continues for longer, and so we can see more
errors per compile. This is mildly more user-friendly because it stops
users having to run rustc n times to see n macro errors: just run it
once to see all of them.
If the library is in the working directory, its path won't have a "/"
which will cause dlopen to search /usr/lib etc. It turns out that Path
auto-normalizes during joins so Path::new(".").join(path) is actually a
no-op.
NodeIds are sequential integers starting at zero, so we can achieve some
memory savings by just storing the items all in a line in a vector.
The occupancy for typical crates seems to be 75-80%, so we're already
more efficient than a HashMap (maximum occupancy 75%), not even counting
the extra book-keeping that HashMap does.
This commit re-works how the monitor() function works and how it both receives
and transmits errors. There are a few cases in which the compiler can abort:
1. A normal compiler error. In this case, the compiler raises a FatalError as
the failure value of the task. If this happens, then the monitor task does
nothing. It ignores all stderr output of the child task and it also
suppresses the failure message of the main task itself. This means that on a
normal compiler error just the error message itself is printed.
2. A normal internal compiler error. These are invoked from sess.span_bug() and
friends. In these cases, they follow the same path (raising a FatalError),
but they will also print an ICE message which has a URL to go report a bug.
3. An actual compiler bug. This happens whenever anything calls fail!() instead
of going through the session itself. In this case, we print out stuff about
RUST_LOG=2 and we by default capture all stderr and print via warn!() so it's
only printed out with the RUST_LOG var set.
For `use` statements, this means disallowing qualifiers when in functions and
disallowing `priv` outside of functions.
For `extern mod` statements, this means disallowing everything everywhere. It
may have been envisioned for `pub extern mod foo` to be a thing, but it
currently doesn't do anything (resolve doesn't pick it up), so better to err on
the side of forwards-compatibility and forbid it entirely for now.
Closes#9957
This commit re-works how the monitor() function works and how it both receives
and transmits errors. There are a few cases in which the compiler can abort:
1. A normal compiler error. In this case, the compiler raises a FatalError as
the failure value of the task. If this happens, then the monitor task does
nothing. It ignores all stderr output of the child task and it also
suppresses the failure message of the main task itself. This means that on a
normal compiler error just the error message itself is printed.
2. A normal internal compiler error. These are invoked from sess.span_bug() and
friends. In these cases, they follow the same path (raising a FatalError),
but they will also print an ICE message which has a URL to go report a bug.
3. An actual compiler bug. This happens whenever anything calls fail!() instead
of going through the session itself. In this case, we print out stuff about
RUST_LOG=2 and we by default capture all stderr and print via warn!() so it's
only printed out with the RUST_LOG var set.
For `use` statements, this means disallowing qualifiers when in functions and
disallowing `priv` outside of functions.
For `extern mod` statements, this means disallowing everything everywhere. It
may have been envisioned for `pub extern mod foo` to be a thing, but it
currently doesn't do anything (resolve doesn't pick it up), so better to err on
the side of forwards-compatibility and forbid it entirely for now.
Closes#9957
If the library is in the working directory, its path won't have a "/"
which will cause dlopen to search /usr/lib etc. It turns out that Path
auto-normalizes during joins so Path::new(".").join(path) is actually a
no-op.
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
cc #11119
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
Major changes:
- Define temporary scopes in a syntax-based way that basically defaults
to the innermost statement or conditional block, except for in
a `let` initializer, where we default to the innermost block. Rules
are documented in the code, but not in the manual (yet).
See new test run-pass/cleanup-value-scopes.rs for examples.
- Refactors Datum to better define cleanup roles.
- Refactor cleanup scopes to not be tied to basic blocks, permitting
us to have a very large number of scopes (one per AST node).
- Introduce nascent documentation in trans/doc.rs covering datums and
cleanup in a more comprehensive way.
r? @pcwalton
This means that compilation continues for longer, and so we can see more
errors per compile. This is mildly more user-friendly because it stops
users having to run rustc n times to see n macro errors: just run it
once to see all of them.
This is a first pass on support for procedural macros that aren't hardcoded into libsyntax. It is **not yet ready to merge** but I've opened a PR to have a chance to discuss some open questions and implementation issues.
Example
=======
Here's a silly example showing off the basics:
my_synext.rs
```rust
#[feature(managed_boxes, globs, macro_registrar, macro_rules)];
extern mod syntax;
use syntax::ast::{Name, token_tree};
use syntax::codemap::Span;
use syntax::ext::base::*;
use syntax::parse::token;
#[macro_export]
macro_rules! exported_macro (() => (2))
#[macro_registrar]
pub fn macro_registrar(register: |Name, SyntaxExtension|) {
register(token::intern(&"make_a_1"),
NormalTT(@SyntaxExpanderTT {
expander: SyntaxExpanderTTExpanderWithoutContext(expand_make_a_1),
span: None,
} as @SyntaxExpanderTTTrait,
None));
}
pub fn expand_make_a_1(cx: &mut ExtCtxt, sp: Span, tts: &[token_tree]) -> MacResult {
if !tts.is_empty() {
cx.span_fatal(sp, "make_a_1 takes no arguments");
}
MRExpr(quote_expr!(cx, 1i))
}
```
main.rs:
```rust
#[feature(phase)];
#[phase(syntax)]
extern mod my_synext;
fn main() {
assert_eq!(1, make_a_1!());
assert_eq!(2, exported_macro!());
}
```
Overview
=======
Crates that contain syntax extensions need to define a function with the following signature and annotation:
```rust
#[macro_registrar]
pub fn registrar(register: |ast::Name, ext::base::SyntaxExtension|) { ... }
```
that should call the `register` closure with each extension it defines. `macro_rules!` style macros can be tagged with `#[macro_export]` to be exported from the crate as well.
Crates that wish to use externally loadable syntax extensions load them by adding the `#[phase(syntax)]` attribute to an `extern mod`. All extensions registered by the specified crate are loaded with the same scoping rules as `macro_rules!` macros. If you want to use a crate both for syntax extensions and normal linkage, you can use `#[phase(syntax, link)]`.
Open questions
===========
* ~~Does the `macro_crate` syntax make sense? It wraps an entire `extern mod` declaration which looks a bit weird but is nice in the sense that the crate lookup logic can be identical between normal external crates and external macro crates. If the `extern mod` syntax, changes, this will get it for free, etc.~~ Changed to a `phase` attribute.
* ~~Is the magic name `macro_crate_registration` the right way to handle extension registration? It could alternatively be handled by a function annotated with `#[macro_registration]` I guess.~~ Switched to an attribute.
* The crate loading logic lives inside of librustc, which means that the syntax extension infrastructure can't directly access it. I've worked around this by passing a `CrateLoader` trait object from the driver to libsyntax that can call back into the crate loading logic. It should be possible to pull things apart enough that this isn't necessary anymore, but it will be an enormous refactoring project. I think we'll need to create a couple of new libraries: libsynext libmetadata/ty and libmiddle.
* Item decorator extensions can be loaded but the `deriving` decorator itself can't be extended so you'd need to do e.g. `#[deriving_MyTrait] #[deriving(Clone)]` instead of `#[deriving(MyTrait, Clone)]`. Is this something worth bothering with for now?
Remaining work
===========
- [x] ~~There is not yet support for rustdoc downloading and compiling referenced macro crates as it does for other referenced crates. This shouldn't be too hard I think.~~
- [x] ~~This is not testable at stage1 and sketchily testable at stages above that. The stage *n* rustc links against the stage *n-1* libsyntax and librustc. Unfortunately, crates in the test/auxiliary directory link against the stage *n* libstd, libextra, libsyntax, etc. This causes macro crates to fail to properly dynamically link into rustc since names end up being mangled slightly differently. In addition, when rustc is actually installed onto a system, there are actually do copies of libsyntax, libstd, etc: the ones that user code links against and a separate set from the previous stage that rustc itself uses. By this point in the bootstrap process, the two library versions *should probably* be binary compatible, but it doesn't seem like a sure thing. Fixing this is apparently hard, but necessary to properly cross compile as well and is being tracked in #11145.~~ The offending tests are ignored during `check-stage1-rpass` and `check-stage1-cfail`. When we get a snapshot that has this commit, I'll look into how feasible it'll be to get them working on stage1.
- [x] ~~`macro_rules!` style macros aren't being exported. Now that the crate loading infrastructure is there, this should just require serializing the AST of the macros into the crate metadata and yanking them out again, but I'm not very familiar with that part of the compiler.~~
- [x] ~~The `macro_crate_registration` function isn't type-checked when it's loaded. I poked around in the `csearch` infrastructure a bit but didn't find any super obvious ways of checking the type of an item with a certain name. Fixing this may also eliminate the need to `#[no_mangle]` the registration function.~~ Now that the registration function is identified by an attribute, typechecking this will be like typechecking other annotated functions.
- [x] ~~The dynamic libraries that are loaded are never unloaded. It shouldn't require too much work to tie the lifetime of the `DynamicLibrary` object to the `MapChain` that its extensions are loaded into.~~
- [x] ~~The compiler segfaults sometimes when loading external crates. The `DynamicLibrary` reference and code objects from that library are both put into the same hash table. When the table drops, due to the random ordering the library sometimes drops before the objects do. Once #11228 lands it'll be easy to fix this.~~
Major changes:
- Define temporary scopes in a syntax-based way that basically defaults
to the innermost statement or conditional block, except for in
a `let` initializer, where we default to the innermost block. Rules
are documented in the code, but not in the manual (yet).
See new test run-pass/cleanup-value-scopes.rs for examples.
- Refactors Datum to better define cleanup roles.
- Refactor cleanup scopes to not be tied to basic blocks, permitting
us to have a very large number of scopes (one per AST node).
- Introduce nascent documentation in trans/doc.rs covering datums and
cleanup in a more comprehensive way.
This fixes the incorrect lexing of things like:
~~~rust
let b = 0o2f32;
let d = 0o4e6;
let f = 0o6e6f32;
~~~
and brings the float literal lexer in line with the description of the float literals in the manual.
Specifically, dissallow setting the number base for every type of float
literal, not only those that contain the decimal point. This is in line with
the description in the manual.
The `print!` and `println!` macros are now the preferred method of printing, and so there is no reason to export the `stdio` functions in the prelude. The functions have also been replaced by their macro counterparts in the tutorial and other documentation so that newcomers don't get confused about what they should be using.
The `print!` and `println!` macros are now the preferred method of printing, and so there is no reason to export the `stdio` functions in the prelude. The functions have also been replaced by their macro counterparts in the tutorial and other documentation so that newcomers don't get confused about what they should be using.
This trait seems to stray too far from the mandate of a standard library as implementations may vary between use cases. Third party libraries should implement their own if they need something like it.
This closes#5316.
r? @alexcrichton, @pcwalton
This is just an unnecessary trait that no one's ever going to parameterize over
and it's more useful to just define the methods directly on the types
themselves. The implementors of this type almost always don't want
inner_mut_ref() but they're forced to define it as well.
`expand_include_str()` in libsyntax seems to have corrupted the CodeMap by always setting the BytePos of any included files to zero. It now uses `CodeMap::new_filemap()` which should set everything properly. This should fix issue #11322 but I don't want to close it before I have confirmation from the reporters that the problem is indeed fixed.
- don't check for an hardcoded copyright claim year, check the 2 surrounding strings instead
- logic: if either the `//` or `#`-style copyright patterns are found, don't invalidate
- cleanup hardcoded content and streamline the few files with different line breaks
r? @brson
I'd really like to be able to do something like
```rust
struct MapChain<'next, K, V> {
info: BlockInfo,
map: HashMap<K, V>,
next: Option<&'next mut MapChain<'next, K, V>
}
```
but I can't get the lifetimes to work out.
The resulting symbol names aren't very pretty at all:
trait Trait { fn method(&self); }
impl<'a> Trait for ~[(&'a int, fn())] { fn method(&self) {} }
gives
Trait$$UP$$VEC$$TUP_2$$BP$int$$FN$$::method::...hash...::v0.0
However, at least it contain some reference to the Self type, unlike
`Trait$__extensions__::method:...`, which is what the symbol name used
to be for anything other than `impl Trait for foo::bar::Baz` (which
became, and still becomes, `Trait$Baz::method`).
I'd really like to be able to do something like
struct MapChain<'next, K, V> {
info: BlockInfo,
map: HashMap<K, V>,
next: Option<&'next mut MapChain<'next, K, V>
}
but I can't get the lifetimes to work out.
Note that this removes a number of run-pass tests which are exercising behavior
of the old runtime. This functionality no longer exists and is thoroughly tested
inside of libgreen and libnative. There isn't really the notion of "starting the
runtime" any more. The major notion now is "bootstrapping the initial task".
This extracts everything related to green scheduling from libstd and introduces
a new libgreen crate. This mostly involves deleting most of std::rt and moving
it to libgreen.
Along with the movement of code, this commit rearchitects many functions in the
scheduler in order to adapt to the fact that Local::take now *only* works on a
Task, not a scheduler. This mostly just involved threading the current green
task through in a few locations, but there were one or two spots where things
got hairy.
There are a few repercussions of this commit:
* tube/rc have been removed (the runtime implementation of rc)
* There is no longer a "single threaded" spawning mode for tasks. This is now
encompassed by 1:1 scheduling + communication. Convenience methods have been
introduced that are specific to libgreen to assist in the spawning of pools of
schedulers.
This uses quite a bit of unsafe code for speed and failure safety, and allocates `2*n` temporary storage.
[Performance](https://gist.github.com/huonw/5547f2478380288a28c2):
| n | new | priority_queue | quick3 |
|-------:|---------:|---------------:|---------:|
| 5 | 200 | 155 | 106 |
| 100 | 6490 | 8750 | 5810 |
| 10000 | 1300000 | 1790000 | 1060000 |
| 100000 | 16700000 | 23600000 | 12700000 |
| sorted | 520000 | 1380000 | 53900000 |
| trend | 1310000 | 1690000 | 1100000 |
(The times are in nanoseconds, having subtracted the set-up time (i.e. the `just_generate` bench target).)
I imagine that there is still significant room for improvement, particularly because both priority_queue and quick3 are doing a static call via `Ord` or `TotalOrd` for the comparisons, while this is using a (boxed) closure.
Also, this code does not `clone`, unlike `quick_sort3`; and is stable, unlike both of the others.
Right now the --crate-id and related flags are all process *after* the entire
crate is parsed. This is less than desirable when used with makefiles because it
means that just to learn the output name of the crate you have to parse the
entire crate (unnecessary).
This commit changes the behavior to lift the handling of these flags much sooner
in the compilation process. This allows us to not have to parse the entire crate
and only have to worry about parsing the crate attributes themselves. The
related methods have all been updated to take an array of attributes rather than
a crate.
Additionally, this ceases duplication of the "what output are we producing"
logic in order to correctly handle things in the case of --test.
Finally, this adds tests for all of this functionality to ensure that it does
not regress.
We decided in the 12/10/13 weekly meeting that trailing commas should be
accepted pretty much anywhere. They are currently not allowed in struct
patterns, and this commit adds support for that.
Closes#10392
Right now the --crate-id and related flags are all process *after* the entire
crate is parsed. This is less than desirable when used with makefiles because it
means that just to learn the output name of the crate you have to parse the
entire crate (unnecessary).
This commit changes the behavior to lift the handling of these flags much sooner
in the compilation process. This allows us to not have to parse the entire crate
and only have to worry about parsing the crate attributes themselves. The
related methods have all been updated to take an array of attributes rather than
a crate.
Additionally, this ceases duplication of the "what output are we producing"
logic in order to correctly handle things in the case of --test.
Finally, this adds tests for all of this functionality to ensure that it does
not regress.
We decided in the 12/10/13 weekly meeting that trailing commas should be
accepted pretty much anywhere. They are currently not allowed in struct
patterns, and this commit adds support for that.
Closes#10392
This change extends the pkgid attribute to allow of explicit crate names, instead of always inferring them based on the path. This means that if your GitHub repo is called `rust-foo`, you can have your pkgid set your library name to `foo`. You'd do this with a pkgid attribute like `github.com/somewhere/rust-foo#foo:1.0`.
This is half of the fix for #10922.
Previously the a pkgid of `foo/rust-bar#1.0` implied a crate name of
`rust-bar` and didn't allow this to be overridden. Now you can override the
inferred crate name with `foo/rust-bar#bar:1.0`.
Understand 'pkgid' in stage0. As a bonus, the snapshot now contains now metadata
(now that those changes have landed), and the snapshot download is half as large
as it used to be!
When --dep-info is given, rustc will write out a `$input_base.d` file in the
output directory that contains Makefile compatible dependency information for
use with tools like make and ninja.
Also remove all instances of 'self within the codebase.
This fixes#10889.
To make reviewing easier the following files were modified with more than a dumb text replacement:
- `src/test/compile-fail/lifetime-no-keyword.rs`
- `src/test/compile-fail/lifetime-obsoleted-self.rs`
- `src/test/compile-fail/regions-free-region-ordering-incorrect.rs`
- `src/libsyntax/parse/lexer.rs`
I also renumbered things at the same time; ``in`` was shifted into its
alphabetical position and the reserved keywords were reordered (a couple
of them were out of order).
Unused special identifiers are also removed in the second part.
Previously, if you wanted to bind a field mutably or by ref, you had to
do something like Foo { x: ref mut x }. You can now just do
Foo { ref mut x }.
Closes#6137
It's twenty lines longer, but makes for clearer separation of strict and
reserved keywords (probably a good thing) and removes another moving
part (the definitions of `(STRICT|RESERVED)_KEYWORD_(START|FINAL)`).
This replaces the link meta attributes with a pkgid attribute and uses a hash
of this as the crate hash. This makes the crate hash computable by things
other than the Rust compiler. It also switches the hash function ot SHA1 since
that is much more likely to be available in shell, Python, etc than SipHash.
Fixes#10188, #8523.
This replaces the link meta attributes with a pkgid attribute and uses a hash
of this as the crate hash. This makes the crate hash computable by things
other than the Rust compiler. It also switches the hash function ot SHA1 since
that is much more likely to be available in shell, Python, etc than SipHash.
Fixes#10188, #8523.
I also renumbered things at the same time; ``in`` was shifted into its
alphabetical position and the reserved keywords were reordered (a couple
of them were out of order).
Previously, if you wanted to bind a field mutably or by ref, you had to
do something like Foo { x: ref mut x }. You can now just do
Foo { ref mut x }.
Closes#6137
This bug showed up because the visitor only visited the path of the implemented
trait via walk_path (with no corresponding visit_path function). I have modified
the visitor to use visit_path (which is now overridable), and the privacy
visitor overrides this function and now properly checks for the privacy of all
paths.
Closes#10857
Previously something like
struct NotEq;
#[deriving(Eq)]
struct Error {
foo: NotEq
}
would just point to the `foo` field, with no mention of the
`deriving(Eq)`. With this patch, the compiler creates a note saying "in
expansion of #[deriving(Eq)]" pointing to the Eq.
(includes some cleanup/preparation; the commit view might be nicer, to filter out the noise of the first one.)
In order to keep up to date with changes to the libraries that `llvm-config`
spits out, the dependencies to the LLVM are a dynamically generated rust file.
This file is now automatically updated whenever LLVM is updated to get kept
up-to-date.
At the same time, this cleans out some old cruft which isn't necessary in the
makefiles in terms of dependencies.
Closes#10745Closes#10744
using the expansion info.
Previously something like
struct NotEq;
#[deriving(Eq)]
struct Error {
foo: NotEq
}
would just point to the `foo` field, with no mention of the
`deriving(Eq)`. With this patch, the compiler creates a note saying "in
expansion of #[deriving(Eq)]" pointing to the Eq.
This reverts commit c54427ddfb.
Leave the #[ignores] in that were added to rustpkg tests.
Conflicts:
src/librustc/driver/driver.rs
src/librustc/metadata/creader.rs
This function had type &[u8] -> ~str, i.e. it allocates a string
internally, even though the non-allocating version that take &[u8] ->
&str and ~[u8] -> ~str are all that is necessary in most circumstances.
This registers new snapshots after the landing of #10528, and then goes on to tweak the build process to build a monolithic `rustc` binary for use in future snapshots. This mainly involved dropping the dynamic dependency on `librustllvm`, so that's now built as a static library (with a dynamically generated rust file listing LLVM dependencies).
This currently doesn't actually make the snapshot any smaller (24MB => 23MB), but I noticed that the executable has 11MB of metadata so once progress is made on #10740 we should have a much smaller snapshot.
There's not really a super-compelling reason to distribute just a binary because we have all the infrastructure for dealing with a directory structure, but to me it seems "more correct" that a snapshot compiler is just a `rustc` binary.
**Note**: I only tested on top of my #10670 PR, size reductions come from both change sets.
With this, [more enums are shrinked](https://gist.github.com/eddyb/08fef0dfc6ff54e890bc), the most significant one being `ast_node`, from 104 bytes (master) to 96 (#10670) and now to 32 bytes.
My own testcase requires **200MB** less when compiling (not including the other **200MB** gained in #10670), and rustc-stage2 is down by about **130MB**.
I believe there is more to gain by fiddling with the enums' layouts.
In this series of commits, I've implemented static linking for rust. The scheme I implemented was the same as my [mailing list post](https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html).
The commits have more details to the nitty gritty of what went on. I've rebased this on top of my native mutex pull request (#10479), but I imagine that it will land before this lands, I just wanted to pre-emptively get all the rebase conflicts out of the way (becuase this is reorganizing building librustrt as well).
Some contentious points I want to make sure are all good:
* I've added more "compiler chooses a default" behavior than I would like, I want to make sure that this is all very clearly outlined in the code, and if not I would like to remove behavior or make it clearer.
* I want to make sure that the new "fancy suite" tests are ok (using make/python instead of another rust crate)
If we do indeed pursue this, I would be more than willing to write up a document describing how linking in rust works. I believe that this behavior should be very understandable, and the compiler should never hinder someone just because linking is a little fuzzy.
This commit implements the support necessary for generating both intermediate
and result static rust libraries. This is an implementation of my thoughts in
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html.
When compiling a library, we still retain the "lib" option, although now there
are "rlib", "staticlib", and "dylib" as options for crate_type (and these are
stackable). The idea of "lib" is to generate the "compiler default" instead of
having too choose (although all are interchangeable). For now I have left the
"complier default" to be a dynamic library for size reasons.
Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an
rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a
dynamic object. I chose this for size reasons, but also because you're probably
not going to be embedding the rustc compiler anywhere any time soon.
Other than the options outlined above, there are a few defaults/preferences that
are now opinionated in the compiler:
* If both a .dylib and .rlib are found for a rust library, the compiler will
prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option
* If generating a "lib", the compiler will generate a dynamic library. This is
overridable by explicitly saying what flavor you'd like (rlib, staticlib,
dylib).
* If no options are passed to the command line, and no crate_type is found in
the destination crate, then an executable is generated
With this change, you can successfully build a rust program with 0 dynamic
dependencies on rust libraries. There is still a dynamic dependency on
librustrt, but I plan on removing that in a subsequent commit.
This change includes no tests just yet. Our current testing
infrastructure/harnesses aren't very amenable to doing flavorful things with
linking, so I'm planning on adding a new mode of testing which I believe belongs
as a separate commit.
Closes#552
Previously, `//// foo` and `/*** foo ***/` were accepted as doc comments. This
changes that, so that only `/// foo` and `/** foo ***/` are accepted. This
confuses many newcomers and it seems weird.
Also update the manual for these changes, and modernify the EBNF for comments.
Closes#10638
### Rationale
There is no reason to support more than 2³² nodes or names at this moment, as compiling something that big (even without considering the quadratic space usage of some analysis passes) would take at least **64GB**.
Meanwhile, some can't (or barely can) compile rustc because it requires almost **1.5GB**.
### Potential problems
Can someone confirm this doesn't affect metadata (de)serialization? I can't tell myself, I know nothing about it.
### Results
Some structures have a size reduction of 25% to 50%: [before](https://gist.github.com/luqmana/3a82a51fa9c86d9191fa) - [after](https://gist.github.com/eddyb/5a75f8973d3d8018afd3).
Sadly, there isn't a massive change in the memory used for compiling stage2 librustc (it doesn't go over **1.4GB** as [before](http://huonw.github.io/isrustfastyet/mem/), but I can barely see the difference).
However, my own testcase (previously peaking at **1.6GB** in typeck) shows a reduction of **200**-**400MB**.
Currently, the parser doesn't give any context when it finds an unclosed
delimiter and it's not EOF. Report the most recent unclosed delimiter, to help
the user along.
Closes#10636
Currently, the parser doesn't give any context when it finds an unclosed
delimiter and it's not EOF. Report the most recent unclosed delimiter, to help
the user along.
Closes#10636
This was needed to access UEFI boot services in my new Boot2Rust experiment.
I also realized that Rust functions declared as extern always use the C calling convention regardless of how they were declared, so this pull request fixes that as well.
ToStr, Encodable and Decodable are not marked as such, since they're
already expensive, and lead to large methods, so inlining will bloat the
metadata & the binaries.
This means that something like
#[deriving(Eq)]
struct A { x: int }
creates an instance like
#[doc = "Automatically derived."]
impl ::std::cmp::Eq for A {
#[inline]
fn eq(&self, __arg_0: &A) -> ::bool {
match *__arg_0 {
A{x: ref __self_1_0} =>
match *self {
A{x: ref __self_0_0} => true && __self_0_0.eq(__self_1_0)
}
}
}
#[inline]
fn ne(&self, __arg_0: &A) -> ::bool {
match *__arg_0 {
A{x: ref __self_1_0} =>
match *self {
A{x: ref __self_0_0} => false || __self_0_0.ne(__self_1_0)
}
}
}
}
(The change being the `#[inline]` attributes.)
ToStr, Encodable and Decodable are not marked as such, since they're
already expensive, and lead to large methods, so inlining will bloat the
metadata & the binaries.
This means that something like
#[deriving(Eq)]
struct A { x: int }
creates an instance like
#[doc = "Automatically derived."]
impl ::std::cmp::Eq for A {
#[inline]
fn eq(&self, __arg_0: &A) -> ::bool {
match *__arg_0 {
A{x: ref __self_1_0} =>
match *self {
A{x: ref __self_0_0} => true && __self_0_0.eq(__self_1_0)
}
}
}
#[inline]
fn ne(&self, __arg_0: &A) -> ::bool {
match *__arg_0 {
A{x: ref __self_1_0} =>
match *self {
A{x: ref __self_0_0} => false || __self_0_0.ne(__self_1_0)
}
}
}
}
(The change being the `#[inline]` attributes.)
Now the privacy pass returns enough information that other passes do not need to duplicate the visibility rules, and the missing_doc implementation is more consistent with other lint checks.
Previously, the `exported_items` set created by the privacy pass was
incomplete. Specifically, it did not include items that had been defined
at a private path but then `pub use`d at a public path. This commit
finds all crate exports during the privacy pass. Consequently, some code
in the reachable pass and in rustdoc is no longer necessary. This commit
then removes the separate `MissingDocLintVisitor` lint pass, opting to
check missing_doc lint in the same pass as the other lint checkers using
the visibility result computed by the privacy pass.
Fixes#9777.
These two attributes are no longer useful now that Rust has decided to leave
segmented stacks behind. It is assumed that the rust task's stack is always
large enough to make an FFI call (due to the stack being very large).
There's always the case of stack overflow, however, to consider. This does not
change the behavior of stack overflow in Rust. This is still normally triggered
by the __morestack function and aborts the whole process.
C stack overflow will continue to corrupt the stack, however (as it did before
this commit as well). The future improvement of a guard page at the end of every
rust stack is still unimplemented and is intended to be the mechanism through
which we attempt to detect C stack overflow.
Closes#8822Closes#10155
This adds an other ABI option which allows a custom selection over the target
architecture and OS. The only current candidate for this change is that kernel32
on win32 uses stdcall, but on win64 it uses the cdecl calling convention.
Otherwise everywhere else this is defined as using the Cdecl calling convention.
cc #10049Closes#8774
This adds an other ABI option which allows a custom selection over the target
architecture and OS. The only current candidate for this change is that kernel32
on win32 uses stdcall, but on win64 it uses the cdecl calling convention.
Otherwise everywhere else this is defined as using the Cdecl calling convention.
cc #10049Closes#8774
Fully support multiple lifetime parameters on types and elsewhere, removing special treatment for `'self`. I am submitting this a touch early in that I plan to push a new commit with more tests specifically targeting types with multiple lifetime parameters -- but the current code bootstraps and passes `make check`.
Fixes#4846
This rearranges the deriving code so that #[deriving] a trait on a field
that doesn't implement that trait will point to the field in question,
e.g.
struct NotEq; // doesn't implement Eq
#[deriving(Eq)]
struct Foo {
ok: int,
also_ok: ~str,
bad: NotEq // error points here.
}
Unfortunately, this means the error is disconnected from the `deriving`
itself but there's no current way to pass that information through to
rustc except via the spans, at the moment.
Fixes#7724.
This adds bindings to the remaining functions provided by libuv, all of which
are useful operations on files which need to get exposed somehow.
Some highlights:
* Dropped `FileReader` and `FileWriter` and `FileStream` for one `File` type
* Moved all file-related methods to be static methods under `File`
* All directory related methods are still top-level functions
* Created `io::FilePermission` types (backed by u32) that are what you'd expect
* Created `io::FileType` and refactored `FileStat` to use FileType and
FilePermission
* Removed the expanding matrix of `FileMode` operations. The mode of reading a
file will not have the O_CREAT flag, but a write mode will always have the
O_CREAT flag.
Closes#10130Closes#10131Closes#10121
This commit moves all thread-blocking I/O functions from the std::os module.
Their replacements can be found in either std::rt::io::file or in a hidden
"old_os" module inside of native::file. I didn't want to outright delete these
functions because they have a lot of special casing learned over time for each
OS/platform, and I imagine that these will someday get integrated into a
blocking implementation of IoFactory. For now, they're moved to a private module
to prevent bitrot and still have tests to ensure that they work.
I've also expanded the extensions to a few more methods defined on Path, most of
which were previously defined in std::os but now have non-thread-blocking
implementations as part of using the current IoFactory.
The api of io::file is in flux, but I plan on changing it in the next commit as
well.
Closes#10057
New standards have arisen in recent months, mostly for the use of
rustpkg, but the main Rust codebase has not been altered to match these
new specifications. This changeset rectifies most of these issues.
- Renamed the crate source files `src/libX/X.rs` to `lib.rs`, for
consistency with current styles; this affects extra, rustc, rustdoc,
rustpkg, rustuv, std, syntax.
- Renamed `X/X.rs` to `X/mod.rs,` as is now recommended style, for
`std::num` and `std::terminfo`.
- Shifted `src/libstd/str/ascii.rs` out of the otherwise unused `str`
directory, to be consistent with its import path of `std::ascii`;
libstd is flat at present so it's more appropriate thus.
While this removes some `#[path = "..."]` directives, it does not remove
all of them, and leaves certain other inconsistencies, such as `std::u8`
et al. which are actually stored in `src/libstd/num/` (one subdirectory
down). No quorum has been reached on this issue, so I felt it best to
leave them all alone at present. #9208 deals with the possibility of
making libstd more hierarchical (such as changing the crate to match the
current filesystem structure, which would make the module path
`std::num::u8`).
There is one thing remaining in which this repository is not
rustpkg-compliant: rustpkg would have `src/std/` et al. rather than
`src/libstd/` et al. I have not endeavoured to change that at this point
as it would guarantee prompt bitrot and confusion. A change of that
magnitude needs to be discussed first.
This extension can be used to concatenate string literals at compile time. C has
this useful ability when placing string literals lexically next to one another,
but this needs to be handled at the syntax extension level to recursively expand
macros.
The major use case for this is something like:
macro_rules! mylog( ($fmt:expr $($arg:tt)*) => {
error2!(concat!(file!(), ":", line!(), " - ", $fmt) $($arg)*);
})
Where the mylog macro will automatically prepend the filename/line number to the
beginning of every log message.
- `begin_unwind` and `fail!` is now generic over any `T: Any + Send`.
- Every value you fail with gets boxed as an `~Any`.
- Because of implementation issues, `&'static str` and `~str` are still
handled specially behind the scenes.
- Changed the big macro source string in libsyntax to a raw string
literal, and enabled doc comments there.
- `begin_unwind` is now generic over any `T: Any + Send`.
- Every value you fail with gets boxed as an `~Any`.
- Because of implementation details, `&'static str` and `~str` are still
handled specially behind the scenes.
- Changed the big macro source string in libsyntax to a raw string
literal, and enabled doc comments there.
Allows an enum with a discriminant to use any of the primitive integer types to store it. By default the smallest usable type is chosen, but this can be overridden with an attribute: `#[repr(int)]` etc., or `#[repr(C)]` to match the target's C ABI for the equivalent C enum.
Also adds a lint pass for using non-FFI safe enums in extern declarations, checks that specified discriminants can be stored in the specified type if any, and fixes assorted code that was assuming int.
Used nowhere, and these are likely incorrect anyway: self needs to be
dereferenced once more otherwise the method calls will be reusing the
current impl... bam! Infinite recursion.
The general idea is to remove conditions completely from I/O, so in the meantime
remove the read_error condition to mean the same thing as the io_error condition.
Drop the `2` suffix on all of them, updating all code in the process of doing so. This is a completely automated change, and it's dependent on the snapshots going through.
This should close#9468.
I removed the test stating that nested comments should not be implemented.
I had a little chicken-and-egg problem because a comment of the std contains "/*", and adding support for nested comment creates a backward incompatibility in that case, so I had to use a dirty hack to get stage1 and stage2 to compile. This part should be revert when this commit lands in a snapshot.
This is my first non-typo contribution, so I'm open to any comment.