Properly capture trailing 'unglued' token
If we try to capture the `Vec<u8>` in `Option<Vec<u8>>`, we'll
need to capture a `>` token which was 'unglued' from a `>>` token.
The processing of unglueing a token for parsing purposes bypasses the
usual capturing infrastructure, so we currently lose the trailing `>`.
As a result, we fall back to the reparsed `TokenStream`, causing us to
lose spans.
This commit makes token capturing keep track of a trailing 'unglued'
token. Note that we don't need to care about unglueing except at the end
of the captured tokens - if we capture both the first and second unglued
tokens, then we'll end up capturing the full 'glued' token, which
already works correctly.
Recover on `const impl<> X for Y`
`@leonardo-m` mentioned that `const impl Foo for Bar` could be recovered from in #79287.
I'm not sure about the error strings as they are, I think it should probably be something like the error that `expected_one_of_not_found` makes + the suggestion to flip the keywords, but I'm not sure how exactly to do that. Also, I decided not to try to handle `const unsafe impl` or `unsafe const impl` cause I figured that `unsafe impl const` would be pretty rare anyway (if it's even valid?), and it wouldn't be worth making the code more messy.
If we try to capture the `Vec<u8>` in `Option<Vec<u8>>`, we'll
need to capture a `>` token which was 'unglued' from a `>>` token.
The processing of unglueing a token for parsing purposes bypasses the
usual capturing infrastructure, so we currently lose the trailing `>`.
As a result, we fall back to the reparsed `TokenStream`, causing us to
lose spans.
This commit makes token capturing keep track of a trailing 'unglued'
token. Note that we don't need to care about unglueing except at the end
of the captured tokens - if we capture both the first and second unglued
tokens, then we'll end up capturing the full 'glued' token, which
already works correctly.
Update error to reflect that integer literals can have float suffixes
For example, `1` is parsed as an integer literal, but it can be turned
into a float with the suffix `f32`. Now the error calls them "numeric
literals" and notes that you can add a float suffix since they can be
either integers or floats.
rustc_parse: fix ConstBlock expr span
The span for a ConstBlock expression should presumably run through the end of the block it contains and not stop at the keyword, just like is done with similar block-containing expression kinds, such as a TryBlock
Properly handle attributes on statements
We now collect tokens for the underlying node wrapped by `StmtKind`
nstead of storing tokens directly in `Stmt`.
`LazyTokenStream` now supports capturing a trailing semicolon after it
is initially constructed. This allows us to avoid refactoring statement
parsing to wrap the parsing of the semicolon in `parse_tokens`.
Attributes on item statements
(e.g. `fn foo() { #[bar] struct MyStruct; }`) are now treated as
item attributes, not statement attributes, which is consistent with how
we handle attributes on other kinds of statements. The feature-gating
code is adjusted so that proc-macro attributes are still allowed on item
statements on stable.
Two built-in macros (`#[global_allocator]` and `#[test]`) needed to be
adjusted to support being passed `Annotatable::Stmt`.
For example, `1` is parsed as an integer literal, but it can be turned
into a float with the suffix `f32`. Now the error calls them "numeric
literals" and notes that you can add a float suffix since they can be
either integers or floats.
When parsing a statement (e.g. inside a function body),
we now consider `struct Foo {};` and `$stmt;` to each consist
of two statements: `struct Foo {}` and `;`, and `$stmt` and `;`.
As a result, an attribute macro invoke as
`fn foo() { #[attr] struct Bar{}; }` will see `struct Bar{}` as its
input. Additionally, the 'unused semicolon' lint now fires in more
places.
We now collect tokens for the underlying node wrapped by `StmtKind`
instead of storing tokens directly in `Stmt`.
`LazyTokenStream` now supports capturing a trailing semicolon after it
is initially constructed. This allows us to avoid refactoring statement
parsing to wrap the parsing of the semicolon in `parse_tokens`.
Attributes on item statements
(e.g. `fn foo() { #[bar] struct MyStruct; }`) are now treated as
item attributes, not statement attributes, which is consistent with how
we handle attributes on other kinds of statements. The feature-gating
code is adjusted so that proc-macro attributes are still allowed on item
statements on stable.
Two built-in macros (`#[global_allocator]` and `#[test]`) needed to be
adjusted to support being passed `Annotatable::Stmt`.
Cache pretty-print/retokenize result to avoid compile time blowup
Fixes#79242
If a `macro_rules!` recursively builds up a nested nonterminal
(passing it to a proc-macro at each step), we will end up repeatedly
pretty-printing/retokenizing the same nonterminals. Unfortunately, the
'probable equality' check we do has a non-trivial cost, which leads to a
blowup in compilation time.
As a workaround, we cache the result of the 'probable equality' check,
which eliminates the compilation time blowup for the linked issue. This
commit only touches a single file (other than adding tests), so it
should be easy to backport.
The proper solution is to remove the pretty-print/retokenize hack
entirely. However, this will almost certainly break a large number of
crates that were relying on hygiene bugs created by using the reparsed
`TokenStream`. As a result, we will definitely not want to backport
such a change.
Fixes#79242
If a `macro_rules!` recursively builds up a nested nonterminal
(passing it to a proc-macro at each step), we will end up repeatedly
pretty-printing/retokenizing the same nonterminals. Unfortunately, the
'probable equality' check we do has a non-trivial cost, which leads to a
blowup in compilation time.
As a workaround, we cache the result of the 'probable equality' check,
which eliminates the compilation time blowup for the linked issue. This
commit only touches a single file (other than adding tests), so it
should be easy to backport.
The proper solution is to remove the pretty-print/retokenize hack
entirely. However, this will almost certainly break a large number of
crates that were relying on hygiene bugs created by using the reparsed
`TokenStream`. As a result, we will definitely not want to backport
such a change.
Make `_` an expression, to discard values in destructuring assignments
This is the third and final step towards implementing destructuring assignment (RFC: rust-lang/rfcs#2909, tracking issue: #71126). This PR is the third and final part of #71156, which was split up to allow for easier review.
With this PR, an underscore `_` is parsed as an expression but is allowed *only* on the left-hand side of a destructuring assignment. There it simply discards a value, similarly to the wildcard `_` in patterns. For instance,
```rust
(a, _) = (1, 2)
```
will simply assign 1 to `a` and discard the 2. Note that for consistency,
```
_ = foo
```
is also allowed and equivalent to just `foo`.
Thanks to ````@varkor```` who helped with the implementation, particularly around pre-expansion gating.
r? ````@petrochenkov````
rustc_parse: Remove optimization for 0-length streams in `collect_tokens`
The optimization conflates empty token streams with unknown token stream, which is at least suspicious, and doesn't affect performance because 0-length token streams are very rare.
r? `@Aaron1011`
The optimization conflates empty token streams with unknown token stream, which is at least suspicious, and doesn't affect performance because 0-length token streams are very rare.
Implement destructuring assignment for structs and slices
This is the second step towards implementing destructuring assignment (RFC: rust-lang/rfcs#2909, tracking issue: #71126). This PR is the second part of #71156, which was split up to allow for easier review.
Note that the first PR (#78748) is not merged yet, so it is included as the first commit in this one. I thought this would allow the review to start earlier because I have some time this weekend to respond to reviews. If ``@petrochenkov`` prefers to wait until the first PR is merged, I totally understand, of course.
This PR implements destructuring assignment for (tuple) structs and slices. In order to do this, the following *parser change* was necessary: struct expressions are not required to have a base expression, i.e. `Struct { a: 1, .. }` becomes legal (in order to act like a struct pattern).
Unfortunately, this PR slightly regresses the diagnostics implemented in #77283. However, it is only a missing help message in `src/test/ui/issues/issue-77218.rs`. Other instances of this diagnostic are not affected. Since I don't exactly understand how this help message works and how to fix it yet, I was hoping it's OK to regress this temporarily and fix it in a follow-up PR.
Thanks to ``@varkor`` who helped with the implementation, particularly around the struct rest changes.
r? ``@petrochenkov``
Do not collect tokens for doc comments
Doc comment is a single token and AST has all the information to re-create it precisely.
Doc comments are also responsible for majority of calls to `collect_tokens` (with `num_calls == 1` and `num_calls == 0`, cc https://github.com/rust-lang/rust/pull/78736).
(I also moved token collection into `fn parse_attribute` to deduplicate code a bit.)
r? `@Aaron1011`
rustc_ast: Do not panic by default when visiting macro calls
Panicking by default made sense when we didn't have HIR or MIR and everything worked on AST, but now all AST visitors run early and majority of them have to deal with macro calls, often by ignoring them.
The second commit renames `visit_mac` to `visit_mac_call`, the corresponding structures were renamed earlier in https://github.com/rust-lang/rust/pull/69589.
Fixes#78675
We now bail out of `prepend_attrs` if we ended up capturing any inner
attributes (which can happen in several places, due to token capturing
for `macro_rules!` arguments.