Use libgcc_s when linking dynamically. Convert the static libunwind to
static-nobundle, as libunwind.a is copied from musl_root and available
in the library search path.
- `RUST_BACKTRACE=full` prints all the informations (old behaviour)
- `RUST_BACKTRACE=(0|no)` disables the backtrace.
- `RUST_BACKTRACE=<everything else>` (including `1`) shows a simplified
backtrace, without the function addresses and with cleaned filenames
and symbols. Also removes some unneded frames at the beginning and the
end.
Fixes#37783.
PR is #38165.
Remove not(stage0) from deny(warnings)
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.
Haiku: Initial work at OS support
These changes should be non-invasive to non-Haiku platforms. These patches were hand reworked from Neil's original Rust 1.9.0 patches. I've done some style cleanup and design updates along the way.
There are a few small additional patches to libc, rust-installer and compiler-rt that will be submitted once this one is accepted.
Haiku can be compiled on Linux, and a full gcc cross-compiler with a Haiku target is available, which means bootstrapping should be fairly easy. The patches here have already successfully bootstrapped under our haiku x86_gcc2 architecture. http://rust-on-haiku.com/wiki/PortingRust
I'll be focusing on our more modern gcc5 x86 and x86 architectures for now.
As for support, we're not seeking official support for now. We understand Haiku isn't a top-tier OS choice, however having these patches upstream greatly reduces the amount of patchwork we have to do. Mesa has Haiku code upstream, and we submit patches to keep it going. Mesa doesn't test on Haiku and we're ok with that :-)
This adds support for building the Rust compiler and standard
library for s390x-linux, allowing a full cross-bootstrap sequence
to complete. This includes:
- Makefile/configure changes to allow native s390x builds
- Full Rust compiler support for the s390x C ABI
(only the non-vector ABI is supported at this point)
- Port of the standard library to s390x
- Update the liblibc submodule to a version including s390x support
- Testsuite fixes to allow clean "make check" on s390x
Caveats:
- Resets base cpu to "z10" to bring support in sync with the default
behaviour of other compilers on the platforms. (Usually, upstream
supports all older processors; a distribution build may then chose
to require a more recent base version.) (Also, using zEC12 causes
failures in the valgrind tests since valgrind doesn't fully support
this CPU yet.)
- z13 vector ABI is not yet supported. To ensure compatible code
generation, the -vector feature is passed to LLVM. Note that this
means that even when compiling for z13, no vector instructions
will be used. In the future, support for the vector ABI should be
added (this will require common code support for different ABIs
that need different data_layout strings on the same platform).
- Two test cases are (temporarily) ignored on s390x to allow passing
the test suite. The underlying issues still need to be fixed:
* debuginfo/simd.rs fails because of incorrect debug information.
This seems to be a LLVM bug (also seen with C code).
* run-pass/union/union-basic.rs simply seems to be incorrect for
all big-endian platforms.
Signed-off-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
This commit adds support to rustbuild to run crate unit tests (those defined by
`#[test]`) as well as documentation tests. All tests are powered by `cargo test`
under the hood.
Each step requires the `libtest` library is built for that corresponding stage.
Ideally the `test` crate would be a dev-dependency, but for now it's just easier
to ensure that we sequence everything in the right order.
Currently no filtering is implemented, so there's not actually a method of
testing *only* libstd or *only* libcore, but rather entire swaths of crates are
tested all at once.
A few points of note here are:
* The `coretest` and `collectionstest` crates are just listed as `[[test]]`
entires for `cargo test` to naturally pick up. This mean that `cargo test -p
core` actually runs all the tests for libcore.
* Libraries that aren't tested all mention `test = false` in their `Cargo.toml`
* Crates aren't currently allowed to have dev-dependencies due to
rust-lang/cargo#860, but we can likely alleviate this restriction once
workspaces are implemented.
cc #31590
This commit is an implementation of [RFC 1513] which allows applications to
alter the behavior of panics at compile time. A new compiler flag, `-C panic`,
is added and accepts the values `unwind` or `panic`, with the default being
`unwind`. This model affects how code is generated for the local crate, skipping
generation of landing pads with `-C panic=abort`.
[RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md
Panic implementations are then provided by crates tagged with
`#![panic_runtime]` and lazily required by crates with
`#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic
runtime must match the final product, and if the panic strategy is not `abort`
then the entire DAG must have the same panic strategy.
With the `-C panic=abort` strategy, users can expect a stable method to disable
generation of landing pads, improving optimization in niche scenarios,
decreasing compile time, and decreasing output binary size. With the `-C
panic=unwind` strategy users can expect the existing ability to isolate failure
in Rust code from the outside world.
Organizationally, this commit dismantles the `sys_common::unwind` module in
favor of some bits moving part of it to `libpanic_unwind` and the rest into the
`panicking` module in libstd. The custom panic runtime support is pretty similar
to the custom allocator support with the only major difference being how the
panic runtime is injected (takes the `-C panic` flag into account).