Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
This adds support for lint groups to the compiler. Lint groups are a way of
grouping a number of lints together under one name. For example, this also
defines a default lint for naming conventions, named `bad_style`. Writing
`#[allow(bad_style)]` is equivalent to writing
`#[allow(non_camel_case_types, non_snake_case, non_uppercase_statics)]`. These
lint groups can also be defined as a compiler plugin using the new
`Registry::register_lint_group` method.
This also adds two built-in lint groups, `bad_style` and `unused`. The contents
of these groups can be seen by running `rustc -W help`.
Implements remaining part of RFC #47.
Addresses issue #16461.
Removed link_attrs from rust.md, they don't appear to be supported by
the parser.
Changed all the tests to use the new extern crate syntax
Change pretty printer to use 'as' syntax
This breaks a fair amount of code. The typical patterns are:
* `for _ in range(0, 10)`: change to `for _ in range(0u, 10)`;
* `println!("{}", 3)`: change to `println!("{}", 3i)`;
* `[1, 2, 3].len()`: change to `[1i, 2, 3].len()`.
RFC #30. Closes#6023.
[breaking-change]
This removes all remnants of `@` pointers from rustc. Additionally, this removes
the `GC` structure from the prelude as it seems odd exporting an experimental
type in the prelude by default.
Closes#14193
[breaking-change]
Closes#14797 (librustc: Fix the issue with labels shadowing variable names by making)
Closes#14823 (Improve error messages for io::fs)
Closes#14827 (libsyntax: Allow `+` to separate trait bounds from objects.)
Closes#14834 (configure: Don't sync unused submodules)
Closes#14838 (Remove typo on collections::treemap::UnionItems)
Closes#14839 (Fix the unused struct field lint for struct variants)
Closes#14840 (Clarify `Any` docs)
Closes#14846 (rustc: [T, ..N] and [T, ..N+1] are not the same)
Closes#14847 (Audit usage of NativeMutex)
Closes#14850 (remove unnecessary PaX detection)
Closes#14856 (librustc: Take in account mutability when casting array to raw ptr.)
Closes#14859 (librustc: Forbid `transmute` from being called on types whose size is)
Closes#14860 (Fix `quote_pat!` & parse outer attributes in `quote_item!`)
This is part of the ongoing renaming of the equality traits. See #12517 for more
details. All code using Eq/Ord will temporarily need to move to Partial{Eq,Ord}
or the Total{Eq,Ord} traits. The Total traits will soon be renamed to {Eq,Ord}.
cc #12517
[breaking-change]
After testing `--pretty normal`, it tries to run `--pretty expanded` and
typecheck output.
Here we don't check convergence since it really diverges: for every
iteration, some extra lines (e.g.`extern crate std`) are inserted.
Some tests are `ignore-pretty`-ed since they cause various issues
with `--pretty expanded`.
When a syntax extension is loaded by the compiler, the dylib that is opened may
have other dylibs that it depends on. The dynamic linker must be able to find
these libraries on the system or else the library will fail to load.
Currently, unix gets by with the use of rpaths. This relies on the dylib not
moving around too drastically relative to its dependencies. For windows,
however, this is no rpath available, and in theory unix should work without
rpaths as well.
This modifies the compiler to add all -L search directories to the dynamic
linker's set of load paths. This is currently managed through environment
variables for each platform.
Closes#13848
This adds the target triple to the crate metadata.
When searching for a crate the phase (link, syntax) is taken into account.
During link phase only crates matching the target triple are considered.
During syntax phase, either the target or host triple will be accepted, unless
the crate defines a macro_registrar, in which case only the host triple will
match.
Syntax-only crates are no longer registered with the cstore, so there's no need
to allocate crate numbers to them. This ends up leaving gaps in the crate
numbering scheme which is not expected in the rest of the compiler.
Closes#13560
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
This commit shreds all remnants of libextra from the compiler and standard
distribution. Two modules, c_vec/tempfile, were moved into libstd after some
cleanup, and the other modules were moved to separate crates as seen fit.
Closes#8784Closes#12413Closes#12576
Where ItemDecorator creates new items given a single item, ItemModifier
alters the tagged item in place. The expansion rules for this are a bit
weird, but I think are the most reasonable option available.
When an item is expanded, all ItemModifier attributes are stripped from
it and the item is folded through all ItemModifiers. At that point, the
process repeats until there are no ItemModifiers in the new item.
A couple of syntax extensions manually expanded expressions, but it
wasn't done universally, most noticably inside of asm!().
There's also a bit of random cleanup.
Externally loaded libraries are able to do things that cause references
to them to survive past the expansion phase (e.g. creating @-box cycles,
launching a task or storing something in task local data). As such, the
library has to stay loaded for the lifetime of the process.