Prevent error reporting from outputting a recursion error if it finds an ambiguous trait impl during suggestions
Closes#89275
This fixes the compiler reporting a recursion error during another already in progress error by trying to make a conversion method suggestion and encounters ambiguous trait implementations that can convert a the original type into a type that can then be recursively converted into itself via another method in the trait.
Updated OverflowError struct to be an enum so I could differentiate between passes - it's no longer a ZST but I don't think that should be a problem as they only generate when there's an error in compiling code anyway
Rollup of 7 pull requests
Successful merges:
- #89298 (Issue 89193 - Fix ICE when using `usize` and `isize` with SIMD gathers )
- #89461 (Add `deref_into_dyn_supertrait` lint.)
- #89477 (Move items related to computing diffs to a separate file)
- #89559 (RustWrapper: adapt for LLVM API change)
- #89585 (Emit item no type error even if type inference fails)
- #89596 (Make cfg imply doc(cfg))
- #89615 (Add InferCtxt::with_opaque_type_inference to get_body_with_borrowck_facts)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Add `deref_into_dyn_supertrait` lint.
Initial implementation of #89460. Resolves#89190.
Maybe also worth a beta backport if necessary.
r? `@nikomatsakis`
Consider unfulfilled obligations in binop errors
When encountering a binop where the types would have been accepted, if
all the predicates had been fulfilled, include information about the
predicates and suggest appropriate `#[derive]`s if possible.
Fix#84515.
When encountering a binop where the types would have been accepted, if
all the predicates had been fulfilled, include information about the
predicates and suggest appropriate `#[derive]`s if possible.
Point at trait(s) that needs to be `impl`emented.
Move generic error message to separate branches
This decomposes an error message in generic constants into more specific branches, for better
readability.
r? ``@lcnr``
Fixed numerus of error message
When there are redundant trait requirements and these are hidden, a message is generated by the following code snippet:
`format!("{} redundant requirements hidden", count)`
But if there is only a single hidden requirement, it will still print this message in plural instead of singular.
Correctly handle supertraits for min_specialization
Supertraits of specialization markers could circumvent checks for
min_specialization. Elaborating predicates prevents this.
r? ````@nikomatsakis````
Make diangostic item naming consistent
Right now there is about a 50/50 split of naming diagnostic items as `vec_type` vs `Vec`. So it is hard to guess a diagnostic item name with confidence. I know it's not great to change these retroactively, but I think it will be much easier to maintain consistency after consistency is established.
Coerce const FnDefs to implement const Fn traits
You can now pass a FnDef to a function expecting `F` where `F: ~const FnTrait`.
r? ``@oli-obk``
``@rustbot`` label T-compiler F-const_trait_impl
Don't normalize opaque types with escaping late-bound regions
Fixes#88862
Turns out, this has some really bad perf implications in large types (issue #88862). While we technically can handle them fine, it doesn't change test output either way. For now, revert with an added benchmark. Future attempts to change this back will have to consider perf.
Needs a perf run once https://github.com/rust-lang/rustc-perf/pull/1033 is merged
r? `@nikomatsakis`
Turns out, this has some really bad perf implications in large types (issue #88862). While we technically can handle them fine, it doesn't change test output either way. For now, revert with an added benchmark. Future attempts to change this back will have to consider perf.
Be explicit about using Binder::dummy
This is somewhat of a late followup to the binder refactor PR. It removes `ToPredicate` and `ToPolyTraitImpls` that hide the use of `Binder::dummy`. While this does make code a bit more verbose, it allows us be more careful about where we create binders.
Another alternative here might be to add a new trait `ToBinder` or something with a `dummy()` fn. Which could still allow grepping but allows doing something like `trait_ref.dummy()` (but I also wonder if longer-term, it would be better to be even more explicit with a `bind_with_vars(ty::List::empty())` *but* that's not clear yet.
r? ``@nikomatsakis``
Revise never type fallback algorithm
This is a rebase of https://github.com/rust-lang/rust/pull/84573, but dropping the stabilization of never type (and the accompanying large test diff).
Each commit builds & has tests updated alongside it, and could be reviewed in a more or less standalone fashion. But it may make more sense to review the PR as a whole, I'm not sure. It should be noted that tests being updated isn't really a good indicator of final behavior -- never_type_fallback is not enabled by default in this PR, so we can't really see the full effects of the commits here.
This combines the work by Niko, which is [documented in this gist](https://gist.github.com/nikomatsakis/7a07b265dc12f5c3b3bd0422018fa660), with some additional rules largely derived to target specific known patterns that regress with the algorithm solely derived by Niko. We build these from an intuition that:
* In general, fallback to `()` is *sound* in all cases
* But, in general, we *prefer* fallback to `!` as it accepts more code, particularly that written to intentionally use `!` (e.g., Result's with a Infallible/! variant).
When evaluating Niko's proposed algorithm, we find that there are certain cases where fallback to `!` leads to compilation failures in real-world code, and fallback to `()` fixes those errors. In order to allow for stabilization, we need to fix a good portion of these patterns.
The final rule set this PR proposes is that, by default, we fallback from `?T` to `!`, with the following exceptions:
1. `?T: Foo` and `Bar::Baz = ?T` and `(): Foo`, then fallback to `()`
2. Per [Niko's algorithm](https://gist.github.com/nikomatsakis/7a07b265dc12f5c3b3bd0422018fa660#proposal-fallback-chooses-between--and--based-on-the-coercion-graph), the "live" `?T` also fallback to `()`.
The first rule is necessary to address a fairly common pattern which boils down to something like the snippet below. Without rule 1, we do not see the closure's return type as needing a () fallback, which leads to compilation failure.
```rust
#![feature(never_type_fallback)]
trait Bar { }
impl Bar for () { }
impl Bar for u32 { }
fn foo<R: Bar>(_: impl Fn() -> R) {}
fn main() {
foo(|| panic!());
}
```
r? `@jackh726`
Lazy TAIT preparation cleanups
Check that TAIT generics are fully generic in mir typeck instead of wf-check, as wf-check can by definition only check TAIT in return position and not account for TAITs defined in the body of the function
r? `@spastorino` `@nikomatsakis`
fix non_blanket_impls iteration order
We sometimes iterate over all `non_blanket_impls`, not sure if this is observable outside
of error messages (i.e. as incremental bugs). This should fix the underlying issue of #86986.
second attempt of #88718
r? `@nikomatsakis`
Migrate in-tree crates to 2021
This replaces #89075 (cherry picking some of the commits from there), and closes#88637 and fixes#89074.
It excludes a migration of the library crates for now (see tidy diff) because we have some pending bugs around macro spans to fix there.
I instrumented bootstrap during the migration to make sure all crates moved from 2018 to 2021 had the compatibility warnings applied first.
Originally, the intent was to support cargo fix --edition within bootstrap, but this proved fairly difficult to pull off. We'd need to architect the check functionality to support running cargo check and cargo fix within the same x.py invocation, and only resetting sysroots on check. Further, it was found that cargo fix doesn't behave too well with "not quite workspaces", such as Clippy which has several crates. Bootstrap runs with --manifest-path ... for all the tools, and this makes cargo fix only attempt migration for that crate. We can't use e.g. --workspace due to needing to maintain sysroots for different phases of compilation appropriately.
It is recommended to skip the mass migration of Cargo.toml's to 2021 for review purposes; you can also use `git diff d6cd2c6c87 -I'^edition = .20...$'` to ignore the edition = 2018/21 lines in the diff.
Don't use projection cache or candidate cache in intercrate mode
Fixes#88969
It appears that *just* disabling the evaluation cache (in #88994)
leads to other issues involving intercrate mode caching. I suspect
that since we now always end up performing the full evaluation
in intercrate mode, we end up 'polluting' the candidate and projection
caches with results that depend on being in intercrate mode in some way.
Previously, we might have hit a cached evaluation (stored during
non-intercrate mode), and skipped doing this extra work in
intercrate mode.
The whole situation with intercrate mode caching is turning into
a mess. Ideally, we would remove intercrate mode entirely - however,
this might require waiting on Chalk.
Register normalization obligations instead of immediately normalizing in opaque type instantiation
For lazy TAIT we will need to instantiate opaque types from within `rustc_infer`, which cannot invoke normalization methods (they are in `rustc_trait_resolution`). So before we move the logic over to `rustc_infer`, we need make sure no normalization happens anymore. This PR resolves that by just registering normalization obligations and continuing.
This PR is best reviewed commit by commit
I also included f7ad36e which is just an independent cleanup that touches the same code and reduces diagnostics noise a bit
r? `@nikomatsakis` cc `@spastorino`
Fixes#88969
It appears that *just* disabling the evaluation cache (in #88994)
leads to other issues involving intercrate mode caching. I suspect
that since we now always end up performing the full evaluation
in intercrate mode, we end up 'polluting' the candidate and projection
caches with results that depend on being in intercrate mode in some way.
Previously, we might have hit a cached evaluation (stored during
non-intercrate mode), and skipped doing this extra work in
intercrate mode.
The whole situation with intercrate mode caching is turning into
a mess. Ideally, we would remove intercrate mode entirely - however,
this might require waiting on Chalk.