This change tunes ahead-of-time codegening according to the amount of
concurrency available, rather than according to the number of CPUs on
the system. This can lower memory usage by reducing the number of
compiled LLVM modules in memory at once, particularly across several
rustc instances.
Previously, each rustc instance would assume that it should codegen
ahead of time to meet the demand of number-of-CPUs workers. But often, a
rustc instance doesn't have nearly that much concurrency available to
it, because the concurrency availability is split, via the jobserver,
across all active rustc instances spawned by the driving cargo process,
and is further limited by the `-j` flag argument. Therefore, each rustc
might have had several times the number of LLVM modules in memory than
it really needed to meet demand. If the modules were large, the effect
on memory usage would be noticeable.
With this change, the required amount of ahead-of-time codegen scales up
with the actual number of workers running within a rustc instance. Note
that the number of workers running can be less than the actual
concurrency available to a rustc instance. However, if more concurrency
is actually available, workers are spun up quickly as job tokens are
acquired, and the ahead-of-time codegen scales up quickly as well.
The former `chain`+`chain`+`fold` implementation looked nice from a
functional-programming perspective, but it introduced unnecessary layers
of abstraction on every `flat_map`/`flatten` fold. It's straightforward
to just fold each part in turn, and this makes it look like a simplified
version of the existing `try_fold` implementation.
For the `iter::bench_flat_map*` benchmarks, I get a large improvement in
`bench_flat_map_chain_sum`, from 1,598,473 ns/iter to 499,889 ns/iter,
and the rest are unchanged.
Upgrade compiletest-rs to 0.6 and tester to 0.9
These updates allow us to specify multiple testnames for `TESTNAME` by
providing a comma separated list of testnames.
The new version of compiletest-rs also includes `bless` support, but is
not enabled with this PR.
cc #5394
changelog: none
These updates allow us to specify multiple testnames for `TESTNAME`.
The new version of compiletest-rs also includes `bless` support, but is
not enabled with this PR.
Along the way, we also implement a handful of diagnostics improvements
and fixes, particularly with respect to the special handling of `||` in
place of `|` and when there are leading verts in function params, which
don't allow top-level or-patterns anyway.
This does not suggest adding such a function to the public API. This is
just for the purpose of avoiding duplicate code. Many array methods
already contained the same kind of code and there are still many array
related methods to come (e.g. `Iterator::{chunks, map_windows, next_n,
...}`) which all basically need this functionality. Writing custom
`unsafe` code for each of those seems not like a good idea.
32-bit ARM: Emit `lr` instead of `r14` when specified as an `asm!` output register.
On 32-bit ARM platforms, the register `r14` has the alias `lr`. When used as an output register in `asm!`, rustc canonicalizes the name to `r14`. LLVM only knows the register by the name `lr`, and rejects it. This changes rustc's LLVM code generation to output `lr` instead.
closes#82052
r? ``@nagisa``