LLVM generates wrong code (which may be an instance of compile-time UB) when
faced with types that take lots of memory - bigger than the address space.
Make using such types a trans error. While trans errors are bad, overbig
types are expected to be very rare.
Use the integer sizes LLVM uses, rather than having random projections
laying around. Sizes are u64, Alignments are u32, C_*int is target-dependent
but 64-bit is fine (the int -> C_int conversion is non-precision-losing,
but it can be preceded by `as int` conversions which are, so it is
somewhat ugly. However, being able to suffix a `u` to properly infer
integer types is nice).
Previously it had some uninituitive conditionals due to the interaction
with the Rand construction and Clone reinitialisation to create
sequential identifying numbers. This replaces all that with just
constructing the DropCounters with the appropriate identifiers.
[RFC 344](https://github.com/rust-lang/rfcs/pull/344) proposes a set of naming conventions for lints. This PR
renames existing lints to follow the conventions.
Use the following sed script to bring your code up to date:
```
s/unnecessary_typecast/unused_typecasts/g
s/unsigned_negate/unsigned_negation/g
s/type_limits/unused_comparisons/g
s/type_overflow/overflowing_literals/g
s/ctypes/improper_ctypes/g
s/owned_heap_memory/box_pointers/g
s/unused_attribute/unused_attributes/g
s/path_statement/path_statements/g
s/unused_must_use/unused_must_use/g
s/unused_result/unused_results/g
s/non_uppercase_statics/non_upper_case_globals/g
s/unnecessary_parens/unused_parens/g
s/unnecessary_import_braces/unused_import_braces/g
s/unused_unsafe/unused_unsafe/g
s/unsafe_block/unsafe_blocks/g
s/unused_mut/unused_mut/g
s/unnecessary_allocation/unused_allocation/g
s/missing_doc/missing_docs/g
s/unused_imports/unused_imports/g
s/unused_extern_crate/unused_extern_crates/g
s/unnecessary_qualification/unused_qualifications/g
s/unrecognized_lint/unknown_lints/g
s/unused_variable/unused_variables/g
s/dead_assignment/unused_assignments/g
s/unknown_crate_type/unknown_crate_types/g
s/variant_size_difference/variant_size_differences/g
s/transmute_fat_ptr/fat_ptr_transmutes/g
```
Since a large number of lints are being renamed for RFC 344, this PR
adds some basic deprecation/renaming functionality to the pluggable lint
system. It allows a simple mapping of old to new names, and can warn
when old names are being used.
This change needs to be rolled out in stages. In this PR, the
deprecation warning is commented out, but the old name is forwarded to
the new one.
Once the PR lands and we have generated a new snapshot of the
compiler, we can add the deprecation warning and rename all uses of the
lints in the rust codebase. I will file a PR to do so.
Closes#16545Closes#17932
r? @pcwalton
Since a large number of lints are being renamed for RFC 344, this commit
adds some basic deprecation/renaming functionality to the pluggable lint
system. It allows a simple mapping of old to new names, and can warn
when old names are being used.
This change needs to be rolled out in stages. In this commit, the
deprecation warning is commented out, but the old name is forwarded to
the new one.
Once the commit lands and we have generated a new snapshot of the
compiler, we can add the deprecation warning and rename all uses of the
lints in the rust codebase.
RFC 344 proposes a set of naming conventions for lints. This commit
renames existing lints to follow the conventions.
Use the following sed script to bring your code up to date:
```
s/unnecessary_typecast/unused_typecasts/g
s/unsigned_negate/unsigned_negation/g
s/type_limits/unused_comparisons/g
s/type_overflow/overflowing_literals/g
s/ctypes/improper_ctypes/g
s/owned_heap_memory/box_pointers/g
s/unused_attribute/unused_attributes/g
s/path_statement/path_statements/g
s/unused_must_use/unused_must_use/g
s/unused_result/unused_results/g
s/non_uppercase_statics/non_upper_case_globals/g
s/unnecessary_parens/unused_parens/g
s/unnecessary_import_braces/unused_import_braces/g
s/unused_unsafe/unused_unsafe/g
s/unsafe_block/unsafe_blocks/g
s/unused_mut/unused_mut/g
s/unnecessary_allocation/unused_allocation/g
s/missing_doc/missing_docs/g
s/unused_imports/unused_imports/g
s/unused_extern_crate/unused_extern_crates/g
s/unnecessary_qualification/unused_qualifications/g
s/unrecognized_lint/unknown_lints/g
s/unused_variable/unused_variables/g
s/dead_assignment/unused_assignments/g
s/unknown_crate_type/unknown_crate_types/g
s/variant_size_difference/variant_size_differences/g
s/transmute_fat_ptr/fat_ptr_transmutes/g
```
Closes#16545Closes#17932
Due to deprecation, this is a:
[breaking-change]
Previously it had some uninituitive conditionals due to the interaction
with the Rand construction and Clone reinitialisation to create
sequential identifying numbers. This replaces all that with just
constructing the DropCounters with the appropriate identifiers.
This wasn’t really consistent with other things; the last section of the
import was not highlighted in any other case.
Also `use {foo, bar};` was having the foo and bar not highlighted, where
they would have been as separate statements.
The Sieve algorithm only requires checking all elements up to and including the square root of the maximum prime you're looking for. After that, the remaining elements are guaranteed to be prime.