Normalize opaques with late-bound vars again
We have a hack in the compiler where if an opaque has escaping late-bound vars, we skip revealing it even though we *could* reveal it from a technical perspective. First of all, this is weird, since we really should be revealing all opaques in `Reveal::All` mode. Second of all, it causes subtle bugs (linked below).
I attempted to fix this in #100980, which was unfortunately reverted due to perf regressions on codebases that used really deeply nested futures in some interesting ways. The worst of which was #103423, which caused the project to hang on build. Another one was #104842, which was just a slow-down, but not a hang. I took some time afterwards to investigate how to rework `normalize_erasing_regions` to take advantage of better caching, but that effort kinda fizzled out (#104133).
However, recently, I was made aware of more bugs whose root cause is not revealing opaques during codegen. That made me want to fix this again -- in the process, interestingly, I took the the minimized example from https://github.com/rust-lang/rust/issues/103423#issuecomment-1292947043, and it doesn't seem to hang any more...
Thinking about this harder, there have been some changes to the way we lower and typecheck async futures that may have reduced the pathologically large number of outlives obligations (see description of #103423) that we were encountering when normalizing opaques with bound vars the last time around:
* #104321 (lower `async { .. }` directly as a generator that implements `Future`, removing the `from_generator` shim)
* #104833 (removing an `identity_future` fn that was wrapping desugared future generators)
... so given that I can see:
* No significant regression on rust perf bot (https://github.com/rust-lang/rust/pull/107620#issuecomment-1600070317)
* No timeouts in crater run I did (https://github.com/rust-lang/rust/pull/107620#issuecomment-1605428952, rechecked failing crates in https://github.com/rust-lang/rust/pull/107620#issuecomment-1605973434)
... and given that this PR:
* Fixes#104601
* Fixes#107557
* Fixes#109464
* Allows us to remove a `DefiningAnchor::Bubble` from codegen (75a8f681837c70051e0200a14f58ae07dbe58e66)
I'm inclined to give this another shot at landing this. Best case, it just works -- worst case, we get more examples to study how we need to improve the compiler to make this work.
r? types
Fix return type notation errors with -Zlower-impl-trait-in-trait-to-assoc-ty
This just adjust the way we check for RPITITs and uses the new helper method to do the "old" and "new" check at once.
r? `@compiler-errors`
Implement `Sync` for `mpsc::Sender`
`mpsc::Sender` is currently `!Sync` because the previous implementation contained an optimization where the channel started out as single-producer and was dynamically upgraded on the first clone, which relied on a unique reference to the sender. This optimization is one of the main reasons the old implementation was so complex and was removed in #93563. `mpsc::Sender` can now soundly implement `Sync`.
Note for any potential confusion, this chance does *not* add MPMC behavior. This only affects the already `Send + Clone` *sender*, not *receiver*.
It's technically possible to rely on the `!Sync` behavior in the same way as a `PhantomData<*mut T>`, but that seems very unlikely in practice. Either way, this change is insta-stable and needs an FCP.
`@rustbot` label +T-libs-api -T-libs
- Either explicitly annotate `let x: () = expr;` where `x` has unit
type, or remove the unit binding to leave only `expr;` instead.
- Fix disjoint-capture-in-same-closure test
The type inference of argument-position closures and async blocks
regressed in 1.70 as the evaluation order of async blocks changed, as
they are not implicitly wrapped in an identity-function anymore.
Fixes#112225 by making sure the evaluation order stays the same as it
used to.
Note user-facing types of coercion failure
When coercing, for example, `Box<A>` into `Box<dyn B>`, make sure that any failure notes mention *those* specific types, rather than mentioning inner types, like "the cast from `A` to `dyn B`".
I expect end-users are often confused when we skip layers of types and only mention the "innermost" part of a coercion, especially when other notes point at HIR, e.g. #111406.
Tweak await span to not contain dot
Fixes a discrepancy between method calls and await expressions where the latter are desugared to have a span that *contains* the dot (i.e. `.await`) but method call identifiers don't contain the dot. This leads to weird suggestions suggestions in borrowck -- see linked issue.
Fixes#110761
This mostly touches a bunch of tests to tighten their `await` span.
Improve niche placement by trying two strategies and picking the better result
Fixes#104807Fixes#105371
Determining which sort order is better requires calculating the struct size (so we can calculate the niche offset). But that in turn depends on the field order, so happens after sorting. So the simple way to solve that is to run the whole thing twice and pick the better result.
1st commit is just code motion, the meat is in the later ones.
Substitute missing trait items suggestion correctly
Properly substitute missing item suggestions, so that when they reference generics from their parent trait they actually have the right time for the impl.
Also, some other minor tweaks like using `/* Type */` to signify a GAT's type is actually missing, and fixing generic arg suggestions for GATs in general.
Added diagnostic for pin! macro in addition to Box::pin if Unpin isn't implemented
I made a PR earlier, but accidentally renamed a branch and that deleted the PR... sorry for the duplicate
Currently, if an operation on `Pin<T>` is performed that requires `T` to implement `Unpin`, the diagnostic suggestion is to use `Box::pin` ("note: consider using `Box::pin`").
This PR suggests pin! as well, as that's another valid way of pinning a value, and avoids a heap allocation. Appropriate diagnostic suggestions were included to highlight the difference in semantics (local pinning for pin! vs non-local for Box::pin).
Fixes#109964
Preserve argument indexes when inlining MIR
We store argument indexes on VarDebugInfo. Unlike the previous method of relying on the variable index to know whether a variable is an argument, this survives MIR inlining.
We also no longer check if var.source_info.scope is the outermost scope. When a function gets inlined, the arguments to the inner function will no longer be in the outermost scope. What we care about though is whether they were in the outermost scope prior to inlining, which we know by whether we assigned an argument index.
Fixes#83217
I considered using `Option<NonZeroU16>` instead of `Option<u16>` to store the index. I didn't because `TypeFoldable` isn't implemented for `NonZeroU16` and because it looks like due to padding, it currently wouldn't make any difference. But I indexed from 1 anyway because (a) it'll make it easier if later it becomes worthwhile to use a `NonZeroU16` and because the arguments were previously indexed from 1, so it made for a smaller change.
This is my first PR on rust-lang/rust, so apologies if I've gotten anything not quite right.
We store argument indexes on VarDebugInfo. Unlike the previous method of
relying on the variable index to know whether a variable is an argument,
this survives MIR inlining.
We also no longer check if var.source_info.scope is the outermost scope.
When a function gets inlined, the arguments to the inner function will
no longer be in the outermost scope. What we care about though is
whether they were in the outermost scope prior to inlining, which we
know by whether we assigned an argument index.
Fix generics_of for impl's RPITIT synthesized associated type
The only useful commit is the last one.
This makes `generics_of` for the impl side RPITIT copy from the trait's associated type and avoid the fn on the impl side which was previously wrongly used.
This solution is better but we still need to fix resolution of the generated generics.
r? ``@compiler-errors``