region binding at the impl site, so for method types that come from impls,
it is necessary to liberate/instantiate late-bound regions at multiple
depths.
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
The implementation essentially desugars during type collection and AST
type conversion time into the parameter scheme we have now. Only fully
qualified names--e.g. `<T as Foo>::Bar`--are supported.
In my informal measurements, this brings the peak memory usage when
building librustc from 1662M down to 1502M. Since 1662 - 1502 = 160,
this may not recover the entirety of the observed memory regression
(250M) from PR #14604. (However, according to my local measurements,
the regression when building librustc was more like 209M, so perhaps
this will still recover the lions share of the lost memory.)
This basically meant changing the interface so that no borrowed `&Vec`
is exposed, by hiding `fn get_vec` and `fn get_mut_vec` and revising
`fn all_vecs`.
Instead, clients should use one of the other methods; `get_slice`,
`pop`, `truncate`, `replace`, `push_all`, or `is_empty_in`, which
should work for any case currently used in rustc.
parameters
This involves numerous substeps:
1. Treat Self same as any other parameter.
2. No longer compute offsets for method parameters.
3. Store all generic types (both trait/impl and method) with a method,
eliminating odd discrepancies.
4. Stop doing unspeakable things to static methods and instead just use
the natural types, now that we can easily add the type parameters from
trait into the method's polytype.
5. No doubt some more. It was hard to separate these into distinct commits.
Fixes#13564
ty::substs struct. This is a holdover from the olden days of yore. This patch
removes the last vestiges of that practice. This is part of the work
I was doing on #5527.