r? @brson
Unwinding through macros now happens as a call to the trait function `FailWithCause::fail_with()`, which consumes self, allowing to use a more generic failure object in the future.
Unwinding through macros now happens as a call to the trait function `FailWithCause::fail_with()`, which consumes self, allowing to use a more generic failure object in the future.
This reverts commit 6030e3982a.
This reorders error messages in ways that aren't intended. A more satisfying solution will require an interface that allows diagnostics to be grouped together, so that messages that logically belong together aren't reordered.
#4569
Closes#3083.
This takes a similar approach to #5797 where a set is present on the `tcx` of used mutable definitions. Everything is by default warned about, and analyses must explicitly add mutable definitions to this set so they're not warned about.
Most of this was pretty straightforward, although there was one caveat that I ran into when implementing it. Apparently when the old modes are used (or maybe `legacy_modes`, I'm not sure) some different code paths are taken to cause spurious warnings to be issued which shouldn't be issued. I'm not really sure how modes even worked, so I was having a lot of trouble tracking this down. I figured that because they're a legacy thing that I'd just de-mode the compiler so that the warnings wouldn't be a problem anymore (or at least for the compiler).
Other than that, the entire compiler compiles without warnings of unused mutable variables. To prevent bad warnings, #5965 should be landed (which in turn is waiting on #5963) before landing this. I figured I'd stick it out for review anyway though.
This closes#4364. I came into rust after modes had begun to be phased out, so I'm not exactly sure what they all did. My strategy was basically to turn on the compilation warnings and then when everything compiles and passes all the tests it's all good.
In most cases, I just dropped the mode, but in others I converted things to use `&` pointers when otherwise a move would happen.
This depends on #5963. When running the tests, everything passed except for a few compile-fail tests. These tests leaked memory, causing the task to abort differently. By suppressing the ICE from #5963, no leaks happen and the tests all pass. I would have looked into where the leaks were coming from, but I wasn't sure where or how to debug them (I found `RUSTRT_TRACK_ALLOCATIONS`, but it wasn't all that useful).
This switches the unicode functions in core to use static character-range tables and a binary search helper rather than open-coded switch statements. It adds about 50k of read only data to the libcore binary but cuts out a similar amount of compiled IR. Would have done it this way in the first place but we didn't have structured statics for a long time.
Allow a deriving instance using the generic code to short-circuit for
any non-matching enum variants (grouping them all into a _ match),
reducing the number of arms required. Use this to speed up the Eq &
TotalEq implementations.
Pulls out many of the common patterns from the Eq and Clone deriving code (and
invents a few of its own), so that deriving instances are very easy to write
for a certain class of traits. (Basically, those which don't have parameters
and where all methods only take arguments of type `&Self` and return either
`Self` or types with no parameters.)
Good morning,
This first patch series adds support for `#[deriving(Decodable, Encodable)]`, but does not yet remove `#[auto_encode]` and `#[auto_decode]`. I need a snapshot to remove the old code. Along the way it also extends support for tuple structs and struct enum variants.
Also, it includes a minor fix to the pretty printer. We decided a while ago to use 4 spaces to indent a match arm instead of 2. This updates the pretty printer to reflect that.
Cleanup substitutions and treatment of generics around traits in a number of ways
- In a TraitRef, use the self type consistently to refer to the Self type:
- trait ref in `impl Trait<A,B,C> for S` has a self type of `S`.
- trait ref in `A:Trait` has the self type `A`
- trait ref associated with a trait decl has self type `Self`
- trait ref associated with a supertype has self type `Self`
- trait ref in an object type `@Trait` has no self type
- Rewrite `each_bound_traits_and_supertraits` to perform
substitutions as it goes, and thus yield a series of trait refs
that are always in the same 'namespace' as the type parameter
bound given as input. Before, we left this to the caller, but
this doesn't work because the caller lacks adequare information
to perform the type substitutions correctly.
- For provided methods, substitute the generics involved in the provided
method correctly.
- Introduce TypeParameterDef, which tracks the bounds declared on a type
parameter and brings them together with the def_id and (in the future)
other information (maybe even the parameter's name!).
- Introduce Subst trait, which helps to cleanup a lot of the
repetitive code involved with doing type substitution.
- Introduce Repr trait, which makes debug printouts far more convenient.
Fixes#4183. Needed for #5656.
r? @catamorphism