* the logic only checked for / but not for \
* verbatim paths shouldn't skip items at all since they don't get normalized
* the extra branches get optimized out on unix since is_sep_byte is a trivial comparison and is_verbatim is always-false
* tests lacked windows coverage for these cases
That lead to equal paths not having equal hashes and to unnecessary collisions.
Mark the panic_no_unwind lang item as nounwind
This has 2 effects:
- It helps LLVM when inlining since it doesn't need to generate landing pads for `panic_no_unwind`.
- It makes it sound for a panic handler to unwind even if `PanicInfo::can_unwind` returns true. This will simply cause another panic once the unwind tries to go past the `panic_no_unwind` lang item. Eventually this will cause a stack overflow, which is safe.
Require const stability attribute on all stable functions that are `const`
This PR requires all stable functions (of all kinds) that are `const fn` to have a `#[rustc_const_stable]` or `#[rustc_const_unstable]` attribute. Stability was previously implied if omitted; a follow-up PR is planned to change the fallback to be unstable.
Optimize `core::str::Chars::count`
I wrote this a while ago after seeing this function as a bottleneck in a profile, but never got around to contributing it. I saw it again, and so here it is. The implementation is fairly complex, but I tried to explain what's happening at both a high level (in the header comment for the file), and in line comments in the impl. Hopefully it's clear enough.
This implementation (`case00_cur_libcore` in the benchmarks below) is somewhat consistently around 4x to 5x faster than the old implementation (`case01_old_libcore` in the benchmarks below), for a wide variety of workloads, without regressing performance on any of the workload sizes I've tried.
I also improved the benchmarks for this code, so that they explicitly check text in different languages and of different sizes (err, the cross product of language x size). The results of the benchmarks are here:
<details>
<summary>Benchmark results</summary>
<pre>
test str::char_count::emoji_huge::case00_cur_libcore ... bench: 20,216 ns/iter (+/- 3,673) = 17931 MB/s
test str::char_count::emoji_huge::case01_old_libcore ... bench: 108,851 ns/iter (+/- 12,777) = 3330 MB/s
test str::char_count::emoji_huge::case02_iter_increment ... bench: 329,502 ns/iter (+/- 4,163) = 1100 MB/s
test str::char_count::emoji_huge::case03_manual_char_len ... bench: 223,333 ns/iter (+/- 14,167) = 1623 MB/s
test str::char_count::emoji_large::case00_cur_libcore ... bench: 293 ns/iter (+/- 6) = 19331 MB/s
test str::char_count::emoji_large::case01_old_libcore ... bench: 1,681 ns/iter (+/- 28) = 3369 MB/s
test str::char_count::emoji_large::case02_iter_increment ... bench: 5,166 ns/iter (+/- 85) = 1096 MB/s
test str::char_count::emoji_large::case03_manual_char_len ... bench: 3,476 ns/iter (+/- 62) = 1629 MB/s
test str::char_count::emoji_medium::case00_cur_libcore ... bench: 48 ns/iter (+/- 0) = 14750 MB/s
test str::char_count::emoji_medium::case01_old_libcore ... bench: 217 ns/iter (+/- 4) = 3262 MB/s
test str::char_count::emoji_medium::case02_iter_increment ... bench: 642 ns/iter (+/- 7) = 1102 MB/s
test str::char_count::emoji_medium::case03_manual_char_len ... bench: 445 ns/iter (+/- 3) = 1591 MB/s
test str::char_count::emoji_small::case00_cur_libcore ... bench: 18 ns/iter (+/- 0) = 3777 MB/s
test str::char_count::emoji_small::case01_old_libcore ... bench: 23 ns/iter (+/- 0) = 2956 MB/s
test str::char_count::emoji_small::case02_iter_increment ... bench: 66 ns/iter (+/- 2) = 1030 MB/s
test str::char_count::emoji_small::case03_manual_char_len ... bench: 29 ns/iter (+/- 1) = 2344 MB/s
test str::char_count::en_huge::case00_cur_libcore ... bench: 25,909 ns/iter (+/- 39,260) = 13299 MB/s
test str::char_count::en_huge::case01_old_libcore ... bench: 102,887 ns/iter (+/- 3,257) = 3349 MB/s
test str::char_count::en_huge::case02_iter_increment ... bench: 166,370 ns/iter (+/- 12,439) = 2071 MB/s
test str::char_count::en_huge::case03_manual_char_len ... bench: 166,332 ns/iter (+/- 4,262) = 2071 MB/s
test str::char_count::en_large::case00_cur_libcore ... bench: 281 ns/iter (+/- 6) = 19160 MB/s
test str::char_count::en_large::case01_old_libcore ... bench: 1,598 ns/iter (+/- 19) = 3369 MB/s
test str::char_count::en_large::case02_iter_increment ... bench: 2,598 ns/iter (+/- 167) = 2072 MB/s
test str::char_count::en_large::case03_manual_char_len ... bench: 2,578 ns/iter (+/- 55) = 2088 MB/s
test str::char_count::en_medium::case00_cur_libcore ... bench: 44 ns/iter (+/- 1) = 15295 MB/s
test str::char_count::en_medium::case01_old_libcore ... bench: 201 ns/iter (+/- 51) = 3348 MB/s
test str::char_count::en_medium::case02_iter_increment ... bench: 322 ns/iter (+/- 40) = 2090 MB/s
test str::char_count::en_medium::case03_manual_char_len ... bench: 319 ns/iter (+/- 5) = 2109 MB/s
test str::char_count::en_small::case00_cur_libcore ... bench: 15 ns/iter (+/- 0) = 2333 MB/s
test str::char_count::en_small::case01_old_libcore ... bench: 14 ns/iter (+/- 0) = 2500 MB/s
test str::char_count::en_small::case02_iter_increment ... bench: 30 ns/iter (+/- 1) = 1166 MB/s
test str::char_count::en_small::case03_manual_char_len ... bench: 30 ns/iter (+/- 1) = 1166 MB/s
test str::char_count::ru_huge::case00_cur_libcore ... bench: 16,439 ns/iter (+/- 3,105) = 19777 MB/s
test str::char_count::ru_huge::case01_old_libcore ... bench: 89,480 ns/iter (+/- 2,555) = 3633 MB/s
test str::char_count::ru_huge::case02_iter_increment ... bench: 217,703 ns/iter (+/- 22,185) = 1493 MB/s
test str::char_count::ru_huge::case03_manual_char_len ... bench: 157,330 ns/iter (+/- 19,188) = 2066 MB/s
test str::char_count::ru_large::case00_cur_libcore ... bench: 243 ns/iter (+/- 6) = 20905 MB/s
test str::char_count::ru_large::case01_old_libcore ... bench: 1,384 ns/iter (+/- 51) = 3670 MB/s
test str::char_count::ru_large::case02_iter_increment ... bench: 3,381 ns/iter (+/- 543) = 1502 MB/s
test str::char_count::ru_large::case03_manual_char_len ... bench: 2,423 ns/iter (+/- 429) = 2096 MB/s
test str::char_count::ru_medium::case00_cur_libcore ... bench: 42 ns/iter (+/- 1) = 15119 MB/s
test str::char_count::ru_medium::case01_old_libcore ... bench: 180 ns/iter (+/- 4) = 3527 MB/s
test str::char_count::ru_medium::case02_iter_increment ... bench: 402 ns/iter (+/- 45) = 1579 MB/s
test str::char_count::ru_medium::case03_manual_char_len ... bench: 280 ns/iter (+/- 29) = 2267 MB/s
test str::char_count::ru_small::case00_cur_libcore ... bench: 12 ns/iter (+/- 0) = 2666 MB/s
test str::char_count::ru_small::case01_old_libcore ... bench: 12 ns/iter (+/- 0) = 2666 MB/s
test str::char_count::ru_small::case02_iter_increment ... bench: 19 ns/iter (+/- 0) = 1684 MB/s
test str::char_count::ru_small::case03_manual_char_len ... bench: 14 ns/iter (+/- 1) = 2285 MB/s
test str::char_count::zh_huge::case00_cur_libcore ... bench: 15,053 ns/iter (+/- 2,640) = 20067 MB/s
test str::char_count::zh_huge::case01_old_libcore ... bench: 82,622 ns/iter (+/- 3,602) = 3656 MB/s
test str::char_count::zh_huge::case02_iter_increment ... bench: 230,456 ns/iter (+/- 7,246) = 1310 MB/s
test str::char_count::zh_huge::case03_manual_char_len ... bench: 220,595 ns/iter (+/- 11,624) = 1369 MB/s
test str::char_count::zh_large::case00_cur_libcore ... bench: 227 ns/iter (+/- 65) = 20792 MB/s
test str::char_count::zh_large::case01_old_libcore ... bench: 1,136 ns/iter (+/- 144) = 4154 MB/s
test str::char_count::zh_large::case02_iter_increment ... bench: 3,147 ns/iter (+/- 253) = 1499 MB/s
test str::char_count::zh_large::case03_manual_char_len ... bench: 2,993 ns/iter (+/- 400) = 1577 MB/s
test str::char_count::zh_medium::case00_cur_libcore ... bench: 36 ns/iter (+/- 5) = 16388 MB/s
test str::char_count::zh_medium::case01_old_libcore ... bench: 142 ns/iter (+/- 18) = 4154 MB/s
test str::char_count::zh_medium::case02_iter_increment ... bench: 379 ns/iter (+/- 37) = 1556 MB/s
test str::char_count::zh_medium::case03_manual_char_len ... bench: 364 ns/iter (+/- 51) = 1620 MB/s
test str::char_count::zh_small::case00_cur_libcore ... bench: 11 ns/iter (+/- 1) = 3000 MB/s
test str::char_count::zh_small::case01_old_libcore ... bench: 11 ns/iter (+/- 1) = 3000 MB/s
test str::char_count::zh_small::case02_iter_increment ... bench: 20 ns/iter (+/- 3) = 1650 MB/s
</pre>
</details>
I also added fairly thorough tests for different sizes and alignments. This completes on my machine in 0.02s, which is surprising given how thorough they are, but it seems to detect bugs in the implementation. (I haven't run the tests on a 32 bit machine yet since before I reworked the code a little though, so... hopefully I'm not about to embarrass myself).
This uses similar SWAR-style techniques to the `is_ascii` impl I contributed in https://github.com/rust-lang/rust/pull/74066, so I'm going to request review from the same person who reviewed that one. That said am not particularly picky, and might not have the correct syntax for requesting a review from someone (so it goes).
r? `@nagisa`
Also, rename `BorrowedHandle::borrow_raw_handle` and
`BorrowedSocket::borrow_raw_socket` to `BorrowedHandle::borrow_raw` and
`BorrowedSocket::borrow_raw`.
This is just a minor rename to reduce redundancy in the user code calling
these functions, and to eliminate an inessential difference between
`BorrowedFd` code and `BorrowedHandle`/`BorrowedSocket` code.
While here, add a simple test exercising `BorrowedFd::borrow_raw_fd`.
kmc-solid: Fix off-by-one error in `SystemTime::now`
Fixes a miscalculation of `SystemTime` on the [`*-kmc-solid_*`](https://doc.rust-lang.org/nightly/rustc/platform-support/kmc-solid.html) Tier 3 targets.
Unlike the identically-named libc counterpart `tm::tm_mon`, `SOLID_RTC_TIME::tm_mon` contains a 1-based month number.
impl `Arc::unwrap_or_clone`
The function gets the inner value, cloning only if necessary. The conversation started on [`irlo`](https://internals.rust-lang.org/t/arc-into-inner/15707). If the reviewer think the PR has potential to be merged, and does not need an RFC, then I will create the corresponding tracking issues and update the PR.
## Alternative names
- `into_inner`
- `make_owned`
- `make_unique`
- `take_*` (`take_inner`?)
Link `try_exists` docs to `Path::exists`
Links to the existing `Path::exists` method from both `std::Path::try_exists` and `std::fs:try_exists`.
Tracking issue for `path_try_exists`: #83186
pub use std::simd::StdFloat;
Syncs portable-simd up to commit rust-lang/portable-simd@03f6fbb21e,
Diff: 533f0fc81a...03f6fbb21e
This sync requires a little bit more legwork because it also introduces a trait into `std::simd`, so that it is no longer simply a reexport of `core::simd`. Out of simple-minded consistency and to allow more options, I replicated the pattern for the way `core::simd` is integrated in the first place, however this is not necessary if it doesn't acquire any interdependencies inside `std`: it could be a simple crate reexport. I just don't know yet if that will happen or not.
To summarize other misc changes:
- Shifts no longer panic, now wrap on too-large shifts (like `Simd` integers usually do!)
- mask16x32 will now be many i16s, not many i32s... 🙃
- `#[must_use]` is spread around generously
- Adjusts division, float min/max, and `Mask::{from,to}_array` internally to be faster
- Adds the much-requested `Simd::cast::<U>` function (equivalent to `simd.to_array().map(|lane| lane as U)`)
Support configuring whether to capture backtraces at runtime
Tracking issue: https://github.com/rust-lang/rust/issues/93346
This adds a new API to the `std::panic` module which configures whether and how the default panic hook will emit a backtrace when a panic occurs.
After discussion with `@yaahc` on [Zulip](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/backtrace.20lib.20vs.2E.20panic), this PR chooses to avoid adjusting or seeking to provide a similar API for the (currently unstable) std::backtrace API. It seems likely that the users of that API may wish to expose more specific settings rather than just a global one (e.g., emulating the `env_logger`, `tracing` per-module configuration) to avoid the cost of capture in hot code. The API added here could plausibly be copied and/or re-exported directly from std::backtrace relatively easily, but I don't think that's the right call as of now.
```rust
mod panic {
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[non_exhaustive]
pub enum BacktraceStyle {
Short,
Full,
Off,
}
fn set_backtrace_style(BacktraceStyle);
fn get_backtrace_style() -> Option<BacktraceStyle>;
}
```
Several unresolved questions:
* Do we need to move to a thread-local or otherwise more customizable strategy for whether to capture backtraces? See [this comment](https://github.com/rust-lang/rust/pull/79085#issuecomment-727845826) for some potential use cases for this.
* Proposed answer: no, leave this for third-party hooks.
* Bikeshed on naming of all the options, as usual.
* Should BacktraceStyle be moved into `std::backtrace`?
* It's already somewhat annoying to import and/or re-type the `std::panic::` prefix necessary to use these APIs, probably adding a second module to the mix isn't worth it.
Note that PR #79085 proposed a much simpler API, but particularly in light of the desire to fully replace setting environment variables via `env::set_var` to control the backtrace API, a more complete API seems preferable. This PR likely subsumes that one.
Fix incorrect panic message in example
The panic message when calling the `connect()` should probably be a message about connection failure, not a message about binding address failure.
Document valid values of the char type
As discussed at #93392, the current documentation on what constitutes a valid char isn't very detailed and is partly on the MAX constant rather than the type itself.
This PR expands on that information, stating the actual numerical range, giving examples of what won't work, and also mentions how a `char` might be a valid USV but still not be a defined character (terminology checked against [Unicode 14.0, table 2-3](https://www.unicode.org/versions/Unicode14.0.0/ch02.pdf#M9.61673.TableTitle.Table.22.Types.of.Code.Points)).
This change weakens the descriptions of the
`{as,into,from}_raw_{fd,handle,socket}` descriptions from saying that
they *do* express ownership relations to say that they are *typically used*
in ways that express ownership relations. This needed needed since, for
example, std's own [`RawFd`] implements `{As,From,Into}Fd` without any of
the ownership relationships.
This adds proper `# Safety` comments to `from_raw_{fd,handle,socket}`,
adds the requirement that raw handles be not opened with the
`FILE_FLAG_OVERLAPPED` flag, and merges the `OwnedHandle::from_raw_handle`
comment into the main `FromRawHandle::from_raw_handle` comment.
And, this changes `HandleOrNull` and `HandleOrInvalid` to not implement
`FromRawHandle`, since they are intended for limited use in FFI situations,
and not for generic use, and they have constraints that are stronger than
the those of `FromRawHandle`.
[`RawFd`]: https://doc.rust-lang.org/stable/std/os/unix/io/type.RawFd.html