This commit is the culmination of my recent effort to refine Rust's notion of
privacy and visibility among crates. The major goals of this commit were to
remove privacy checking from resolve for the sake of sane error messages, and to
attempt a much more rigid and well-tested implementation of visibility
throughout rust. The implemented rules for name visibility are:
1. Everything pub from the root namespace is visible to anyone
2. You may access any private item of your ancestors.
"Accessing a private item" depends on what the item is, so for a function this
means that you can call it, but for a module it means that you can look inside
of it. Once you look inside a private module, any accessed item must be "pub
from the root" where the new root is the private module that you looked into.
These rules required some more analysis results to get propagated from trans to
privacy in the form of a few hash tables.
I added a new test in which my goal was to showcase all of the privacy nuances
of the language, and I hope to place any new bugs into this file to prevent
regressions.
Overall, I was unable to completely remove the notion of privacy from resolve.
One use of privacy is for dealing with glob imports. Essentially a glob import
can only import *public* items from the destination, and because this must be
done at namespace resolution time, resolve must maintain the notion of "what
items are public in a module". There are some sad approximations of privacy, but
I unfortunately can't see clear methods to extract them outside.
The other use case of privacy in resolve now is one that must stick around
regardless of glob imports. When dealing with privacy, checking a private path
needs to know "what the last private thing was" when looking at a path. Resolve
is the only compiler pass which knows the answer to this question, so it
maintains the answer on a per-path resolution basis (works similarly to the
def_map generated).
Closes#8215
This fixes private statics and functions from being usable cross-crates, along
with some bad privacy error messages. This is a reopening of #8365 with all the
privacy checks in privacy.rs instead of resolve.rs (where they should be
anyway).
These maps of exported items will hopefully get used for generating
documentation by rustdoc
Closes#8592
These commits fix bugs related to identically named statics in functions of implementations in various situations. The commit messages have most of the information about what bugs are being fixed and why.
As a bonus, while I was messing around with name mangling, I improved the backtraces we'll get in gdb by removing `__extensions__` for the trait/type being implemented and by adding the method name as well. Yay!
As with the previous commit, this is targeted at removing the possibility of
collisions between statics. The main use case here is when there's a
type-parametric function with an inner static that's compiled as a library.
Before this commit, any impl would generate a path item of "__extensions__".
This changes this identifier to be a "pretty name", which is either the last
element of the path of the trait implemented or the last element of the type's
path that's being implemented. That doesn't quite cut it though, so the (trait,
type) pair is hashed and again used to append information to the symbol.
Essentially, __extensions__ was removed for something nicer for debugging, and
then some more information was added to symbol name by including a hash of the
trait being implemented and type it's being implemented for. This should prevent
colliding names for inner statics in regular functions with similar names.
This removes the stacking of type parameters that occurs when invoking
trait methods, and fixes all places in the standard library that were
relying on it. It is somewhat awkward in places; I think we'll probably
want something like the `Foo::<for T>::new()` syntax.
When running rusti 32-bit tests from a 64-bit host, these errors came up frequently. My best idea as to what was happening is:
1. First, if you hash the same `int` value on 32-bit and 64-bit, you will get two different hashes.
2. In a cross-compile situation, let's say x86_64 is building an i686 library, all of the hashes will be 64-bit hashes.
3. Then let's say you use the i686 libraries and then attempt to link against the same i686 libraries, because you're calculating hashes with a 32-bit int instead of a 64-bit one, you'll have different hashes and you won't be able to find items in the metadata (the items were generated with a 64-bit int).
This patch changes the items to always be hashed as an `i64` to preserve the hash value across architectures. Here's a nice before/after for this patch of the state of rusti tests
```
host target before after
64 64 yes yes
64 32 no no (llvm assertion)
32 64 no yes
32 32 no no (llvm assertion)
```
Basically one case started working, but currently when the target is 32-bit LLVM is having a lot of problems generating code. That's another separate issue though.
Infers type of constants used as discriminants and ensures they are
integral, instead of forcing them to be a signed integer.
Also, stores discriminant values as uint instead of int interally and
deals with related fallout.
Fixes issue #7994
`crate => Crate`
`local => Local`
`blk => Block`
`crate_num => CrateNum`
`crate_cfg => CrateConfig`
Also, Crate and Local are not wrapped in spanned<T> anymore.
This does a number of things, but especially dramatically reduce the
number of allocations performed for operations involving attributes/
meta items:
- Converts ast::meta_item & ast::attribute and other associated enums
to CamelCase.
- Converts several standalone functions in syntax::attr into methods,
defined on two traits AttrMetaMethods & AttributeMethods. The former
is common to both MetaItem and Attribute since the latter is a thin
wrapper around the former.
- Deletes functions that are unnecessary due to iterators.
- Converts other standalone functions to use iterators and the generic
AttrMetaMethods rather than allocating a lot of new vectors (e.g. the
old code would have to allocate a new vector to use functions that
operated on &[meta_item] on &[attribute].)
- Moves the core algorithm of the #[cfg] matching to syntax::attr,
similar to find_inline_attr and find_linkage_metas.
This doesn't have much of an effect on the speed of #[cfg] stripping,
despite hugely reducing the number of allocations performed; presumably
most of the time is spent in the ast folder rather than doing attribute
checks.
Also fixes the Eq instance of MetaItem_ to correctly ignore spans, so
that `rustc --cfg 'foo(bar)'` now works.
This pull request includes various improvements:
+ Composite types (structs, tuples, boxes, etc) are now handled more cleanly by debuginfo generation. Most notably, field offsets are now extracted directly from LLVM types, as opposed to trying to reconstruct them. This leads to more stable handling of edge cases (e.g. packed structs or structs implementing drop).
+ `debuginfo.rs` in general has seen a major cleanup. This includes better formatting, more readable variable and function names, removal of dead code, and better factoring of functionality.
+ Handling of `VariantInfo` in `ty.rs` has been improved. That is, the `type VariantInfo = @VariantInfo_` typedef has been replaced with explicit uses of @VariantInfo, and the duplicated logic for creating VariantInfo instances in `ty::enum_variants()` and `typeck::check::mod::check_enum_variants()` has been unified into a single constructor function. Both function now look nicer too :)
+ Debug info generation for enum types is now mostly supported. This includes:
+ Good support for C-style enums. Both DWARF and `gdb` know how to handle them.
+ Proper description of tuple- and struct-style enum variants as unions of structs.
+ Proper handling of univariant enums without discriminator field.
+ Unfortunately `gdb` always prints all possible interpretations of a union, so debug output of enums is verbose and unintuitive. Neither `LLVM` nor `gdb` support DWARF's `DW_TAG_variant` which allows to properly describe tagged unions. Adding support for this to `LLVM` seems doable. `gdb` however is another story. In the future we might be able to use `gdb`'s Python scripting support to alleviate this problem. In agreement with @jdm this is not a high priority for now.
+ The debuginfo test suite has been extended with 14 test files including tests for packed structs (with Drop), boxed structs, boxed vecs, vec slices, c-style enums (standalone and embedded), empty enums, tuple- and struct-style enums, and various pointer types to the above.
~~What is not yet included is DI support for some enum edge-cases represented as described in `trans::adt::NullablePointer`.~~
Cheers,
Michael
PS: closes#7819, fixes#7712
This does a number of things, but especially dramatically reduce the
number of allocations performed for operations involving attributes/
meta items:
- Converts ast::meta_item & ast::attribute and other associated enums
to CamelCase.
- Converts several standalone functions in syntax::attr into methods,
defined on two traits AttrMetaMethods & AttributeMethods. The former
is common to both MetaItem and Attribute since the latter is a thin
wrapper around the former.
- Deletes functions that are unnecessary due to iterators.
- Converts other standalone functions to use iterators and the generic
AttrMetaMethods rather than allocating a lot of new vectors (e.g. the
old code would have to allocate a new vector to use functions that
operated on &[meta_item] on &[attribute].)
- Moves the core algorithm of the #[cfg] matching to syntax::attr,
similar to find_inline_attr and find_linkage_metas.
This doesn't have much of an effect on the speed of #[cfg] stripping,
despite hugely reducing the number of allocations performed; presumably
most of the time is spent in the ast folder rather than doing attribute
checks.
Also fixes the Eq instance of MetaItem_ to correctly ignore spaces, so
that `rustc --cfg 'foo(bar)'` now works.