This changes android testing to upload *all* target crates rather than just a
select subset. This should unblock #11867 which is introducing a libglob
dependency in testing.
This is hopefully the beginning of the long-awaited dissolution of libextra.
Using the newly created build infrastructure for building libraries, I decided
to move the first module out of libextra.
While not being a particularly meaty module in and of itself, the flate module
is required by rustc and additionally has a native C dependency. I was able to
very easily split out the C dependency from rustrt, update librustc, and
magically everything gets installed to the right locations and built
automatically.
This is meant to be a proof-of-concept commit to how easy it is to remove
modules from libextra now. I didn't put any effort into modernizing the
interface of libflate or updating it other than to remove the one glob import it
had.
Before this patch, if you wanted to add a crate to the build system you had to
change about 100 lines across 8 separate makefiles. This is highly error prone
and opaque to all but a few. This refactoring is targeted at consolidating this
effort so adding a new crate adds one line in one file in a way that everyone
can understand it.
The new macro loading infrastructure needs the ability to force a
procedural-macro crate to be built with the host architecture rather than the
target architecture (because the compiler is just about to dlopen it).
The official documentation sorely needs an explanation of the rust runtime and what it is exactly, and I want this guide to provide that information.
I'm unsure of whether I've been too light on some topics while too heavy on others. I also feel like a few things are still missing. As always, feedback is appreciated, especially about things you'd like to see written about!
This reorganizes the documentation index to be more focused on the in-tree docs, and to clean up the style, and it also adds @steveklabnik's pointer guide.
Ensure configure creates doc/guides directory
Fix configure makefile and tests
Remove old guides dir and configure option, convert testing to guide
Remove ignored files
Fix submodule issue
prepend dir in makefile so that bor knows how to build the docs
S to uppercase
This pull request extracts all scheduling functionality from libstd, moving it into its own separate crates. The new libnative and libgreen will be the new way in which 1:1 and M:N scheduling is implemented. The standard library still requires an interface to the runtime, however, (think of things like `std::comm` and `io::println`). The interface is now defined by the `Runtime` trait inside of `std::rt`.
The booting process is now that libgreen defines the start lang-item and that's it. I want to extend this soon to have libnative also have a "start lang item" but also allow libgreen and libnative to be linked together in the same process. For now though, only libgreen can be used to start a program (unless you define the start lang item yourself). Again though, I want to change this soon, I just figured that this pull request is large enough as-is.
This certainly wasn't a smooth transition, certain functionality has no equivalent in this new separation, and some functionality is now better enabled through this new system. I did my best to separate all of the commits by topic and keep things fairly bite-sized, although are indeed larger than others.
As a note, this is currently rebased on top of my `std::comm` rewrite (or at least an old copy of it), but none of those commits need reviewing (that will all happen in another pull request).
It only really makes sense to run tests for the build target anyway because it's
not guaranteed that you can execute other targets.
This is blocking the next snapshot
Right now multiple targets/hosts is broken because the libdir passed for all of
the LLVM libraries is for the wrong architecture. By using the right arch
(target, not host), everything is linked and assembled just fine.
In order to keep up to date with changes to the libraries that `llvm-config`
spits out, the dependencies to the LLVM are a dynamically generated rust file.
This file is now automatically updated whenever LLVM is updated to get kept
up-to-date.
At the same time, this cleans out some old cruft which isn't necessary in the
makefiles in terms of dependencies.
Closes#10745Closes#10744
CFG_BUILD_DIR, CFG_LLVM_SRC_DIR and CFG_SRC_DIR all have trailing
slashes, by definition, so this is correct.
(This is purely cosmetic; the doubled slash is ignored by all the tools we're using.)
This infrastructure is meant to support runnings tests that involve various
interesting interdependencies about the types of crates being linked or possibly
interacting with C libraries. The goal of these make tests is to not restrict
them to a particular test runner, but allow each test to run its own tests.
To this end, there is a new src/test/run-make directory which has sub-folders of
tests. Each test requires a `Makefile`, and running the tests constitues simply
running `make` inside the directory. The new target is `check-stageN-rmake`.
These tests will have the destination directory (as TMPDIR) and the local rust
compiler (as RUSTC) passed along to them. There is also some helpful
cross-platform utilities included in src/test/run-make/tools.mk to aid with
compiling C programs and running them.
The impetus for adding this new test suite is to allow various interesting forms
of testing rust linkage. All of the tests initially added are various flavors of
compiling Rust and C with one another as well as just making sure that rust
linkage works in general.
Closes#10434
This commit implements the support necessary for generating both intermediate
and result static rust libraries. This is an implementation of my thoughts in
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html.
When compiling a library, we still retain the "lib" option, although now there
are "rlib", "staticlib", and "dylib" as options for crate_type (and these are
stackable). The idea of "lib" is to generate the "compiler default" instead of
having too choose (although all are interchangeable). For now I have left the
"complier default" to be a dynamic library for size reasons.
Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an
rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a
dynamic object. I chose this for size reasons, but also because you're probably
not going to be embedding the rustc compiler anywhere any time soon.
Other than the options outlined above, there are a few defaults/preferences that
are now opinionated in the compiler:
* If both a .dylib and .rlib are found for a rust library, the compiler will
prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option
* If generating a "lib", the compiler will generate a dynamic library. This is
overridable by explicitly saying what flavor you'd like (rlib, staticlib,
dylib).
* If no options are passed to the command line, and no crate_type is found in
the destination crate, then an executable is generated
With this change, you can successfully build a rust program with 0 dynamic
dependencies on rust libraries. There is still a dynamic dependency on
librustrt, but I plan on removing that in a subsequent commit.
This change includes no tests just yet. Our current testing
infrastructure/harnesses aren't very amenable to doing flavorful things with
linking, so I'm planning on adding a new mode of testing which I believe belongs
as a separate commit.
Closes#552
This commit moves all thread-blocking I/O functions from the std::os module.
Their replacements can be found in either std::rt::io::file or in a hidden
"old_os" module inside of native::file. I didn't want to outright delete these
functions because they have a lot of special casing learned over time for each
OS/platform, and I imagine that these will someday get integrated into a
blocking implementation of IoFactory. For now, they're moved to a private module
to prevent bitrot and still have tests to ensure that they work.
I've also expanded the extensions to a few more methods defined on Path, most of
which were previously defined in std::os but now have non-thread-blocking
implementations as part of using the current IoFactory.
The api of io::file is in flux, but I plan on changing it in the next commit as
well.
Closes#10057
Similarly to the previous commit, libuv is only used by this library, so there's
no need for it to be linked into librustrt and available to all crates by
default.
Allows an enum with a discriminant to use any of the primitive integer types to store it. By default the smallest usable type is chosen, but this can be overridden with an attribute: `#[repr(int)]` etc., or `#[repr(C)]` to match the target's C ABI for the equivalent C enum.
Also adds a lint pass for using non-FFI safe enums in extern declarations, checks that specified discriminants can be stored in the specified type if any, and fixes assorted code that was assuming int.
The actual fix would be to make rustpkg use `rustc::monitor` so it picks
up anything special that rustc needs, but for now let's keep the tests
from breaking.
There are a few reasons that this is a desirable move to take:
1. Proof of concept that a third party event loop is possible
2. Clear separation of responsibility between rt::io and the uv-backend
3. Enforce in the future that the event loop is "pluggable" and replacable
Here's a quick summary of the points of this pull request which make this
possible:
* Two new lang items were introduced: event_loop, and event_loop_factory.
The idea of a "factory" is to define a function which can be called with no
arguments and will return the new event loop as a trait object. This factory
is emitted to the crate map when building an executable. The factory doesn't
have to exist, and when it doesn't then an empty slot is in the crate map and
a basic event loop with no I/O support is provided to the runtime.
* When building an executable, then the rustuv crate will be linked by default
(providing a default implementation of the event loop) via a similar method to
injecting a dependency on libstd. This is currently the only location where
the rustuv crate is ever linked.
* There is a new #[no_uv] attribute (implied by #[no_std]) which denies
implicitly linking to rustuv by default
Closes#5019
api::install_pkg now accepts an argument that's a list of
(kind, path) dependency pairs. This allows custom package scripts to
declare C dependencies, as is demonstrated in
rustpkg::tests::test_c_dependency_ok.
Closes#6403