These functions have very few users since they are mostly replaced by
iterator-based constructions.
Convert a few remaining users in-tree, and reduce the number of
functions by basically renaming build_sized_opt to build, and removing
the other two. This for both the vec and the at_vec versions.
These commits fix bugs related to identically named statics in functions of implementations in various situations. The commit messages have most of the information about what bugs are being fixed and why.
As a bonus, while I was messing around with name mangling, I improved the backtraces we'll get in gdb by removing `__extensions__` for the trait/type being implemented and by adding the method name as well. Yay!
This is currently unsound since `bool` is represented as `i8`. It will
become sound when `bool` is stored as `i8` but always used as `i1`.
However, the current behaviour will always be identical to `x & 1 != 0`,
so there's no need for it. It's also surprising, since `x != 0` is the
expected behaviour.
Closes#7311
d0a1176 r=huonw
e4a76e6 r=thestinger
This is currently unsound since `bool` is represented as `i8`. It will
become sound when `bool` is stored as `i8` but always used as `i1`.
However, the current behaviour will always be identical to `x & 1 != 0`,
so there's no need for it. It's also surprising, since `x != 0` is the
expected behaviour.
Closes#7311
Fix#8468. (Though the right answer in the end, as noted on the dialogue on the ticket, might be to just require trait methods to name their parameters, regardless of whether they have a default method implementation or not.)
As with the previous commit, this is targeted at removing the possibility of
collisions between statics. The main use case here is when there's a
type-parametric function with an inner static that's compiled as a library.
Before this commit, any impl would generate a path item of "__extensions__".
This changes this identifier to be a "pretty name", which is either the last
element of the path of the trait implemented or the last element of the type's
path that's being implemented. That doesn't quite cut it though, so the (trait,
type) pair is hashed and again used to append information to the symbol.
Essentially, __extensions__ was removed for something nicer for debugging, and
then some more information was added to symbol name by including a hash of the
trait being implemented and type it's being implemented for. This should prevent
colliding names for inner statics in regular functions with similar names.
Before, the path name for all items defined in methods of traits and impls never
took into account the name of the method. This meant that if you had two statics
of the same name in two different methods the statics would end up having the
same symbol named (even after mangling) because the path components leading to
the symbol were exactly the same (just __extensions__ and the static name).
It turns out that if you add the symbol "A" twice to LLVM, it automatically
makes the second one "A1" instead of "A". What this meant is that in local crate
compilations we never found this bug. Even across crates, this was never a
problem. The problem arises when you have generic methods that don't get
generated at compile-time of a library. If the statics were re-added to LLVM by
a client crate of a library in a different order, you would reference different
constants (the integer suffixes wouldn't be guaranteed to be the same).
This fixes the problem by adding the method name to symbol path when building
the ast_map. In doing so, two symbols in two different methods are disambiguated
against.
Whenever a generic function was encountered, only the top-level items were
recursed upon, even though the function could contain items inside blocks or
nested inside of other expressions. This fixes the existing code from traversing
just the top level items to using a Visitor to deeply recurse and find any items
which need to be translated.
This was uncovered when building code with --lib, because the encode_symbol
function would panic once it found that an item hadn't been translated.
Closes#8134
Whenever a generic function was encountered, only the top-level items were
recursed upon, even though the function could contain items inside blocks or
nested inside of other expressions. This fixes the existing code from traversing
just the top level items to using a Visitor to deeply recurse and find any items
which need to be translated.
This was uncovered when building code with --lib, because the encode_symbol
function would panic once it found that an item hadn't been translated.
Closes#8134
This reverts commit b8d1fa399402c71331aefd634d710004e00b73a6, reversing
changes made to f22b4b169854c8a4ba86c16ee43327d6bcf94562.
Conflicts:
mk/rt.mk
src/libuv
I've added a test for the second example mentioned in #5239. The first example does not compile with a reasonable error message. Should I add a compile-fail test for that example as well?
/rust/src/test/run-pass/issue-5239.rs:15:45: 15:51 error: binary operation + cannot be applied to type `&int`
rust/src/test/run-pass/issue-5239.rs:15 let _f = |ref x: int| { x += 1};
^~~~~~
error: aborting due to previous error