This overlaps with #22276 (I left make check running overnight) but covers a number of additional cases and has a few rewrites where the clones are not even necessary.
This also implements `RandomAccessIterator` for `iter::Cloned`
cc @steveklabnik, you may want to glance at this before #22281 gets the bors treatment
In most places this preserves the current API by adding an explicit
`'static` bound.
Notably absent are some impls like `unsafe impl<T: Send> Send for
Foo<T>` and the `std::thread` module. It is likely that it will be
possible to remove these after auditing the code to ensure restricted
lifetimes are safe.
More progress on #22251.
This commit tweaks the interface of the `std::env` module to make it more
ergonomic for common usage:
* `env::var` was renamed to `env::var_os`
* `env::var_string` was renamed to `env::var`
* `env::args` was renamed to `env::args_os`
* `env::args` was re-added as a panicking iterator over string values
* `env::vars` was renamed to `env::vars_os`
* `env::vars` was re-added as a panicking iterator over string values.
This should make common usage (e.g. unicode values everywhere) more ergonomic
as well as "the default". This is also a breaking change due to the differences
of what's yielded from each of these functions, but migration should be fairly
easy as the defaults operate over `String` which is a common type to use.
[breaking-change]
This is an implementation of [RFC 578][rfc] which adds a new `std::env` module
to replace most of the functionality in the current `std::os` module. More
details can be found in the RFC itself, but as a summary the following methods
have all been deprecated:
[rfc]: https://github.com/rust-lang/rfcs/pull/578
* `os::args_as_bytes` => `env::args`
* `os::args` => `env::args`
* `os::consts` => `env::consts`
* `os::dll_filename` => no replacement, use `env::consts` directly
* `os::page_size` => `env::page_size`
* `os::make_absolute` => use `env::current_dir` + `join` instead
* `os::getcwd` => `env::current_dir`
* `os::change_dir` => `env::set_current_dir`
* `os::homedir` => `env::home_dir`
* `os::tmpdir` => `env::temp_dir`
* `os::join_paths` => `env::join_paths`
* `os::split_paths` => `env::split_paths`
* `os::self_exe_name` => `env::current_exe`
* `os::self_exe_path` => use `env::current_exe` + `pop`
* `os::set_exit_status` => `env::set_exit_status`
* `os::get_exit_status` => `env::get_exit_status`
* `os::env` => `env::vars`
* `os::env_as_bytes` => `env::vars`
* `os::getenv` => `env::var` or `env::var_string`
* `os::getenv_as_bytes` => `env::var`
* `os::setenv` => `env::set_var`
* `os::unsetenv` => `env::remove_var`
Many function signatures have also been tweaked for various purposes, but the
main changes were:
* `Vec`-returning APIs now all return iterators instead
* All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`.
There is currently on convenience API, `env::var_string`, which can be used to
get the value of an environment variable as a unicode `String`.
All old APIs are `#[deprecated]` in-place and will remain for some time to allow
for migrations. The semantics of the APIs have been tweaked slightly with regard
to dealing with invalid unicode (panic instead of replacement).
The new `std::env` module is all contained within the `env` feature, so crates
must add the following to access the new APIs:
#![feature(env)]
[breaking-change]
In preparation for upcoming changes to the `Writer` trait (soon to be called
`Write`) this commit renames the current `write` method to `write_all` to match
the semantics of the upcoming `write_all` method. The `write` method will be
repurposed to return a `usize` indicating how much data was written which
differs from the current `write` semantics. In order to head off as much
unintended breakage as possible, the method is being deprecated now in favor of
a new name.
[breaking-change]
This commit is an implementation of [RFC 565][rfc] which is a stabilization of
the `std::fmt` module and the implementations of various formatting traits.
Specifically, the following changes were performed:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md
* The `Show` trait is now deprecated, it was renamed to `Debug`
* The `String` trait is now deprecated, it was renamed to `Display`
* Many `Debug` and `Display` implementations were audited in accordance with the
RFC and audited implementations now have the `#[stable]` attribute
* Integers and floats no longer print a suffix
* Smart pointers no longer print details that they are a smart pointer
* Paths with `Debug` are now quoted and escape characters
* The `unwrap` methods on `Result` now require `Display` instead of `Debug`
* The `Error` trait no longer has a `detail` method and now requires that
`Display` must be implemented. With the loss of `String`, this has moved into
libcore.
* `impl<E: Error> FromError<E> for Box<Error>` now exists
* `derive(Show)` has been renamed to `derive(Debug)`. This is not currently
warned about due to warnings being emitted on stage1+
While backwards compatibility is attempted to be maintained with a blanket
implementation of `Display` for the old `String` trait (and the same for
`Show`/`Debug`) this is still a breaking change due to primitives no longer
implementing `String` as well as modifications such as `unwrap` and the `Error`
trait. Most code is fairly straightforward to update with a rename or tweaks of
method calls.
[breaking-change]
Closes#21436
fmt::Show is for debugging, and can and should be implemented for
all public types. This trait is used with `{:?}` syntax. There still
exists #[derive(Show)].
fmt::String is for types that faithfully be represented as a String.
Because of this, there is no way to derive fmt::String, all
implementations must be purposeful. It is used by the default format
syntax, `{}`.
This will break most instances of `{}`, since that now requires the type
to impl fmt::String. In most cases, replacing `{}` with `{:?}` is the
correct fix. Types that were being printed specifically for users should
receive a fmt::String implementation to fix this.
Part of #20013
[breaking-change]
macro_rules! is like an item that defines a macro. Other items don't have a
trailing semicolon, or use a paren-delimited body.
If there's an argument for matching the invocation syntax, e.g. parentheses for
an expr macro, then I think that applies more strongly to the *inner*
delimiters on the LHS, wrapping the individual argument patterns.
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes#18635.
[breaking-change]
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
Now that we have an overloaded comparison (`==`) operator, and that `Vec`/`String` deref to `[T]`/`str` on method calls, many `as_slice()`/`as_mut_slice()`/`to_string()` calls have become redundant. This patch removes them. These were the most common patterns:
- `assert_eq(test_output.as_slice(), "ground truth")` -> `assert_eq(test_output, "ground truth")`
- `assert_eq(test_output, "ground truth".to_string())` -> `assert_eq(test_output, "ground truth")`
- `vec.as_mut_slice().sort()` -> `vec.sort()`
- `vec.as_slice().slice(from, to)` -> `vec.slice(from_to)`
---
Note that e.g. `a_string.push_str(b_string.as_slice())` has been left untouched in this PR, since we first need to settle down whether we want to favor the `&*b_string` or the `b_string[]` notation.
This is rebased on top of #19167
cc @alexcrichton @aturon
In regards to:
https://github.com/rust-lang/rust/issues/19253#issuecomment-64836729
This commit:
* Changes the #deriving code so that it generates code that utilizes fewer
reexports (in particur Option::* and Result::*), which is necessary to
remove those reexports in the future
* Changes other areas of the codebase so that fewer reexports are utilized
This is an initial API stabilization pass for `std::ascii`. Aside from
some renaming to match conversion conventions, and deprecations in favor
of using iterators directly, almost nothing is changed here. However,
the static case conversion tables that were previously public are now private.
The stabilization of the (rather large!) set of extension traits is left
to a follow-up pass, because we hope to land some more general machinery
that will provide the same functionality without custom traits.
[breaking-change]
This commit applies the stabilization of std::fmt as outlined in [RFC 380][rfc].
There are a number of breaking changes as a part of this commit which will need
to be handled to migrated old code:
* A number of formatting traits have been removed: String, Bool, Char, Unsigned,
Signed, and Float. It is recommended to instead use Show wherever possible or
to use adaptor structs to implement other methods of formatting.
* The format specifier for Boolean has changed from `t` to `b`.
* The enum `FormatError` has been renamed to `Error` as well as becoming a unit
struct instead of an enum. The `WriteError` variant no longer exists.
* The `format_args_method!` macro has been removed with no replacement. Alter
code to use the `format_args!` macro instead.
* The public fields of a `Formatter` have become read-only with no replacement.
Use a new formatting string to alter the formatting flags in combination with
the `write!` macro. The fields can be accessed through accessor methods on the
`Formatter` structure.
Other than these breaking changes, the contents of std::fmt should now also all
contain stability markers. Most of them are still #[unstable] or #[experimental]
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0380-stabilize-std-fmt.md
[breaking-change]
Closes#18904
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
- The signature of the `*_equiv` methods of `HashMap` and similar structures
have changed, and now require one less level of indirection. Change your code
from:
```
hashmap.find_equiv(&"Hello");
hashmap.find_equiv(&&[0u8, 1, 2]);
```
to:
```
hashmap.find_equiv("Hello");
hashmap.find_equiv(&[0u8, 1, 2]);
```
- The generic parameter `T` of the `Hasher::hash<T>` method have become
`Sized?`. Downstream code must add `Sized?` to that method in their
implementations. For example:
```
impl Hasher<FnvState> for FnvHasher {
fn hash<T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
}
```
must be changed to:
```
impl Hasher<FnvState> for FnvHasher {
fn hash<Sized? T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
// ^^^^^^
}
```
[breaking-change]
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
AsciiStr::to_lower is now AsciiStr::to_lowercase and AsciiStr::to_upper is AsciiStr::to_uppercase to match Ascii trait.
Part of issue #17790.
This is my first pull request so let me know if anything is incorrect.
Thanks!
[breaking-changes]