This change is an implementation of [RFC 69][rfc] which adds a third kind of
global to the language, `const`. This global is most similar to what the old
`static` was, and if you're unsure about what to use then you should use a
`const`.
The semantics of these three kinds of globals are:
* A `const` does not represent a memory location, but only a value. Constants
are translated as rvalues, which means that their values are directly inlined
at usage location (similar to a #define in C/C++). Constant values are, well,
constant, and can not be modified. Any "modification" is actually a
modification to a local value on the stack rather than the actual constant
itself.
Almost all values are allowed inside constants, whether they have interior
mutability or not. There are a few minor restrictions listed in the RFC, but
they should in general not come up too often.
* A `static` now always represents a memory location (unconditionally). Any
references to the same `static` are actually a reference to the same memory
location. Only values whose types ascribe to `Sync` are allowed in a `static`.
This restriction is in place because many threads may access a `static`
concurrently. Lifting this restriction (and allowing unsafe access) is a
future extension not implemented at this time.
* A `static mut` continues to always represent a memory location. All references
to a `static mut` continue to be `unsafe`.
This is a large breaking change, and many programs will need to be updated
accordingly. A summary of the breaking changes is:
* Statics may no longer be used in patterns. Statics now always represent a
memory location, which can sometimes be modified. To fix code, repurpose the
matched-on-`static` to a `const`.
static FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
change this code to:
const FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
* Statics may no longer refer to other statics by value. Due to statics being
able to change at runtime, allowing them to reference one another could
possibly lead to confusing semantics. If you are in this situation, use a
constant initializer instead. Note, however, that statics may reference other
statics by address, however.
* Statics may no longer be used in constant expressions, such as array lengths.
This is due to the same restrictions as listed above. Use a `const` instead.
[breaking-change]
[rfc]: https://github.com/rust-lang/rfcs/pull/246
The implementation essentially desugars during type collection and AST
type conversion time into the parameter scheme we have now. Only fully
qualified names--e.g. `<T as Foo>::Bar`--are supported.
These `where` clauses are accepted everywhere generics are currently
accepted and desugar during type collection to the type parameter bounds
we have today.
A new keyword, `where`, has been added. Therefore, this is a breaking
change. Change uses of `where` to other identifiers.
[breaking-change]
methods.
This paves the way to associated items by introducing an extra level of
abstraction ("impl-or-trait item") between traits/implementations and
methods. This new abstraction is encoded in the metadata and used
throughout the compiler where appropriate.
There are no functional changes; this is purely a refactoring.
by-reference upvars.
This partially implements RFC 38. A snapshot will be needed to turn this
on, because stage0 cannot yet parse the keyword.
Part of #12381.
This is useful e.g. for tools need a node-id, such as the flowgraph
pretty printer, since it can avoids the need to first pretty-print the
whole expanded,identified input in order to find out what the node-id
actually is.
It currently only supports path suffixes thst are made up of module
names (e.g. you cannot use the type instantiation form `a::<int>::b`
or `option::Option::unwrap_or` as a path suffix for this tool, though
the tool will produce paths that have non-modulues in the portion of
the path that is not included in the suffix).
(addressed review feedback too)
Prior to this, the code there had a few issues:
- Default implementations inconsistently either had the prefix `noop_` or
not.
- Some default methods where implemented in terms of a public noop function
for user code to call, others where implemented directly on the trait
and did not allow users of the trait to reuse the code.
- Some of the default implementations where private, and thus not reusable
for other implementors.
- There where some bugs where default implementations called other default
implementations directly, rather than to the underlying Folder, with the
result of some AST nodes never being visited even if the user implemented that
method. (For example, the current Folder never folded struct fields)
This commit solves this situation somewhat radically by making _all_
`fold_...` functions in the module into Folder methods, and implementing
them all in terms of public `noop_...` functions for other implementors to
call out to.
Some public functions had to be renamed to fit the new system, so this is a
breaking change.
[breaking-change]
Per @pnkfelix 's suggestion, using a trait to make these
field accesses more readable (and vastly more similar
to the original code.
oops fix new ast_map fix
Use one or more of the following `-Z` flag options to tell the
graphviz renderer to include the corresponding dataflow sets (after
the iterative constraint propagation reaches a fixed-point solution):
* `-Z flowgraph-print-loans` : loans computed via middle::borrowck
* `-Z flowgraph-print-moves` : moves computed via middle::borrowck::move_data
* `-Z flowgraph-print-assigns` : assignments, via middle::borrowck::move_data
* `-Z flowgraph-print-all` : all of the available sets are included.
Fix#15016.
----
This also adds a module, `syntax::ast_map::blocks`, that captures a
common abstraction shared amongst code blocks and procedure-like
things. As part of this, moved `ast_map.rs` to subdir
`ast_map/mod.rs`, to follow our directory layout conventions.
(incorporated review feedback from huon, acrichto.)