Right now the compiler's we're using actually default to armv7/thumb2 I believe,
so this should help push them back to what the arm-unknown-linux-* targets are
for. This at least matches that clang does for the `arm-unknown-linux-gnueabihf`
target which is to map it to an armv6 architecture.
Closes#31787
This commit adds support for *truly* unstable options in the compiler, as well
as adding warnings for the start of the deprecation path of
unstable-but-not-really options. Specifically, the following behavior is now in
place for handling unstable options:
* As before, an unconditional error is emitted if an unstable option is passed
and the `-Z unstable-options` flag is not present. Note that passing another
`-Z` flag does not require passing `-Z unstable-options` as well.
* New flags added to the compiler will be in the `Unstable` category as opposed
to the `UnstableButNotReally` category which means they will unconditionally
emit an error when used on stable.
* All current flags are in a category where they will emit warnings when used
that the option will soon be a hard error.
Also as before, it is intended that `-Z` is akin to `#![feature]` in a crate
where it is required to unlock unstable functionality. A nightly compiler which
is used without any `-Z` flags should only be exercising stable behavior.
This PR changes the visibility of extern crate declarations to match that of items (fixes#26775).
To avoid breakage, the PR makes it a `public_in_private` lint to reexport a private extern crate, and it adds the lint `inaccessible_extern_crate` for uses of an inaccessible extern crate.
The lints can be avoided by making the appropriate `extern crate` declaration public.
CryptGenRandom takes a DWORD (u32) for the length so it only supports
writing u32::MAX bytes at a time.
Casting the length from a usize caused truncation meaning the whole
buffer was not always filled.
around a set of paths called `TestPaths`
This commit is not quite standalone; it basically contains all the
borrowing plumbing bits, the interesting stuff comes in the next commit.
As a Rust newbie, I found the book's explanation for why the `filter` closure gets a reference very confusing, and tried to figure out why `filter` is somehow less consumptive than `map` -- but it isn't; that's controlled by `iter`/`into_iter`. I flailed around for a while until @habnabit explained it to me, and in retrospect it is quite obvious :-)
Reference implied that use declarations may appear *only* at the top of blocks and modules, but it is not the case, and the following is valid:
```Rust
fn foo() {
let x = 92;
use baz::bar;
}
```
r? @steveklabnik
In MIR we previously tried to match `let x in { exprs; let y in { exprs; }}` with our data
structures which is rather unwieldy, espeicially because it requires some sort of recursion or
stack to process, while, a flat list of statements is enough – lets only relinquish their lifetime
at the end of the block (i.e. end of the list).
Also fixes#31853.
Hopefully the author caught all the cases. For the mir_dynamic_drops_3 test case the ratio of
memsets to other instructions is 12%. On the other hand we actually do not double drop for at least
the test cases provided anymore in MIR.
This commit adds support for *truly* unstable options in the compiler, as well
as adding warnings for the start of the deprecation path of
unstable-but-not-really options. Specifically, the following behavior is now in
place for handling unstable options:
* As before, an unconditional error is emitted if an unstable option is passed
and the `-Z unstable-options` flag is not present. Note that passing another
`-Z` flag does not require passing `-Z unstable-options` as well.
* New flags added to the compiler will be in the `Unstable` category as opposed
to the `UnstableButNotReally` category which means they will unconditionally
emit an error when used on stable.
* All current flags are in a category where they will emit warnings when used
that the option will soon be a hard error.
Also as before, it is intended that `-Z` is akin to `#![feature]` in a crate
where it is required to unlock unstable functionality. A nightly compiler which
is used without any `-Z` flags should only be exercising stable behavior.
Similar to #31825 where the read/write limits were capped for files, this
implements similar limits when reading/writing networking types. On Unix this
shouldn't affect anything because the write size is already a `usize`, but on
Windows this will cap the read/write amounts to `i32::max_value`.
cc #31841
I am not entirely sure I have got everything right, but if it compiles it is ok probably...
I tested it with msvc x86_64 and gnu.
Somehow a lot of `EXCEPTION-*` constants are dead code when running test, no idea why.
I have put `#![cfg_attr(test, allow(dead_code))]` at the top for this.