When re-exporting a trait/structure/enum, then we need to propagate the
reachability of the type through the methods that are defined on it.
Closes#9906Closes#9968
This commit resumes management of the stack boundaries and limits when switching
between tasks. This additionally leverages the __morestack function to run code
on "stack overflow". The current behavior is to abort the process, but this is
probably not the best behavior in the long term (for deails, see the comment I
wrote up in the stack exhaustion routine).
This fixes a bug in which the visibility rules were approximated by
reachability, but forgot to cover the case where a 'pub use' reexports a private
item. This fixes the commit by instead using the results of the privacy pass of
the compiler to create the initial working set of the reachability pass.
This may have the side effect of increasing the size of metadata, but it's
difficult to avoid for correctness purposes sadly.
Closes#9790
This makes sure that the top-level crate name is correct when emitting log
statements for a monomorphized function in another crate. This happens by
tracing the monomorphized ID back to the external source and then using that
crate index to get the name of the crate.
Closes#3046
It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html
If an item is skipped due to it being unreachable or for some optimization, then
it shouldn't be encoded into the metadata (because it wasn't present in the
first place).
This fixes private statics and functions from being usable cross-crates, along
with some bad privacy error messages. This is a reopening of #8365 with all the
privacy checks in privacy.rs instead of resolve.rs (where they should be
anyway).
These maps of exported items will hopefully get used for generating
documentation by rustdoc
Closes#8592
Progress on #7981
This doesn't completely close the issue because `struct A;` is still allowed, and it's a much larger change to disallow that. I'm also not entirely sure that we want to disallow that. Regardless, punting that discussion to the issue instead.
This fixes private statics and functions from being usable cross-crates, along
with some bad privacy error messages. This is a reopening of #8365 with all the
privacy checks in privacy.rs instead of resolve.rs (where they should be
anyway).
These maps of exported items will hopefully get used for generating
documentation by rustdoc
Closes#8592
If a static is flagged as address_insignificant, then for LLVM to actually
perform the relevant optimization it must have an internal linkage type. What
this means, though, is that the static will not be available to other crates.
Hence, if you have a generic function with an inner static, it will fail to link
when built as a library because other crates will attempt to use the inner
static externally.
This gets around the issue by inlining the static into the metadata. The same
relevant optimization is then applied separately in the external crate. What
this ends up meaning is that all statics tagged with #[address_insignificant]
will appear at most once per crate (by value), but they could appear in multiple
crates.
This should be the last blocker for using format! ...
This doesn't close any bugs as the goal is to convert the parameter to by-value, but this is a step towards being able to make guarantees about `&T` pointers (where T is Freeze) to LLVM.
In #8185 cross-crate condition handlers were fixed by ensuring that globals
didn't start appearing in different crates with different addressed. An
unfortunate side effect of that pull request is that constants weren't inlined
across crates (uint::bits is unknown to everything but libstd).
This commit fixes this inlining by using the `available_eternally` linkage
provided by LLVM. It partially reverts #8185, and then adds support for this
linkage type. The main caveat is that not all statics could be inlined into
other crates. Before this patch, all statics were considered "inlineable items",
but an unfortunate side effect of how we deal with `&static` and `&[static]`
means that these two cases cannot be inlined across crates. The translation of
constants was modified to propogate this condition of whether a constant
should be considered inlineable into other crates.
Closes#9036
In #8185 cross-crate condition handlers were fixed by ensuring that globals
didn't start appearing in different crates with different addressed. An
unfortunate side effect of that pull request is that constants weren't inlined
across crates (uint::bits is unknown to everything but libstd).
This commit fixes this inlining by using the `available_eternally` linkage
provided by LLVM. It partially reverts #8185, and then adds support for this
linkage type. The main caveat is that not all statics could be inlined into
other crates. Before this patch, all statics were considered "inlineable items",
but an unfortunate side effect of how we deal with `&static` and `&[static]`
means that these two cases cannot be inlined across crates. The translation of
constants was modified to propogate this condition of whether a constant
should be considered inlineable into other crates.
Closes#9036
While they may have the same name within various scopes, this changes static
names to use path_pretty_name to append some hash information at the end of the
symbol. We're then guaranteed that each static has a unique NodeId, so this
NodeId is as the "hash" of the pretty name.
Closes#9188
Remove these in favor of the two traits themselves and the wrapper
function std::from_str::from_str.
Add the function std::num::from_str_radix in the corresponding role for
the FromStrRadix trait.
While they may have the same name within various scopes, this changes static
names to use path_pretty_name to append some hash information at the end of the
symbol. We're then guaranteed that each static has a unique NodeId, so this
NodeId is as the "hash" of the pretty name.
Closes#9188
The trait will keep the `Iterator` naming, but a more concise module
name makes using the free functions less verbose. The module will define
iterables in addition to iterators, as it deals with iteration in
general.
These commits fix bugs related to identically named statics in functions of implementations in various situations. The commit messages have most of the information about what bugs are being fixed and why.
As a bonus, while I was messing around with name mangling, I improved the backtraces we'll get in gdb by removing `__extensions__` for the trait/type being implemented and by adding the method name as well. Yay!
There are 6 new compiler recognised attributes: deprecated, experimental,
unstable, stable, frozen, locked (these levels are taken directly from
Node's "stability index"[1]). These indicate the stability of the
item to which they are attached; e.g. `#[deprecated] fn foo() { .. }`
says that `foo` is deprecated.
This comes with 3 lints for the first 3 levels (with matching names) that
will detect the use of items marked with them (the `unstable` lint
includes items with no stability attribute). The attributes can be given
a short text note that will be displayed by the lint. An example:
#[warn(unstable)]; // `allow` by default
#[deprecated="use `bar`"]
fn foo() { }
#[stable]
fn bar() { }
fn baz() { }
fn main() {
foo(); // "warning: use of deprecated item: use `bar`"
bar(); // all fine
baz(); // "warning: use of unmarked item"
}
The lints currently only check the "edges" of the AST: i.e. functions,
methods[2], structs and enum variants. Any stability attributes on modules,
enums, traits and impls are not checked.
[1]: http://nodejs.org/api/documentation.html
[2]: the method check is currently incorrect and doesn't work.
As with the previous commit, this is targeted at removing the possibility of
collisions between statics. The main use case here is when there's a
type-parametric function with an inner static that's compiled as a library.
Before this commit, any impl would generate a path item of "__extensions__".
This changes this identifier to be a "pretty name", which is either the last
element of the path of the trait implemented or the last element of the type's
path that's being implemented. That doesn't quite cut it though, so the (trait,
type) pair is hashed and again used to append information to the symbol.
Essentially, __extensions__ was removed for something nicer for debugging, and
then some more information was added to symbol name by including a hash of the
trait being implemented and type it's being implemented for. This should prevent
colliding names for inner statics in regular functions with similar names.
Before, the path name for all items defined in methods of traits and impls never
took into account the name of the method. This meant that if you had two statics
of the same name in two different methods the statics would end up having the
same symbol named (even after mangling) because the path components leading to
the symbol were exactly the same (just __extensions__ and the static name).
It turns out that if you add the symbol "A" twice to LLVM, it automatically
makes the second one "A1" instead of "A". What this meant is that in local crate
compilations we never found this bug. Even across crates, this was never a
problem. The problem arises when you have generic methods that don't get
generated at compile-time of a library. If the statics were re-added to LLVM by
a client crate of a library in a different order, you would reference different
constants (the integer suffixes wouldn't be guaranteed to be the same).
This fixes the problem by adding the method name to symbol path when building
the ast_map. In doing so, two symbols in two different methods are disambiguated
against.
Whenever a generic function was encountered, only the top-level items were
recursed upon, even though the function could contain items inside blocks or
nested inside of other expressions. This fixes the existing code from traversing
just the top level items to using a Visitor to deeply recurse and find any items
which need to be translated.
This was uncovered when building code with --lib, because the encode_symbol
function would panic once it found that an item hadn't been translated.
Closes#8134
For #7083.
The metadata issue with the old version is now fixed. Ready for review.
This is also not the full solution to #7083, because this is not supported yet:
```
trait Foo : Send { }
impl <T: Send> Foo for T { }
fn foo<T: Foo>(val: T, chan: std::comm::Chan<T>) {
chan.send(val);
}
```
cc @nikomatsakis
* All globals marked as `pub` won't have the `internal` linkage type set
* All global references across crates are forced to use the address of the
global in the other crate via an external reference.
r? @graydon
Closes#8179
* All globals marked as `pub` won't have the `internal` linkage type set
* All global references across crates are forced to use the address of the
global in the other crate via an external reference.
Previously having optional lang_items caused an assertion failure at
compile-time, and then once that was fixed there was a segfault at runtime of
using a NULL crate-map (crates with no_std)
I removed the `static-method-test.rs` test because it was heavily based
on `BaseIter` and there are plenty of other more complex uses of static
methods anyway.
This fixes the large number of problems that prevented cross crate
methods from ever working. It also fixes a couple lingering bugs with
polymorphic default methods and cleans up some of the code paths.
Closes#4102. Closes#4103.
This fixes#6745, which itself relates to #4202. Slightly ham-fisted -- feel particularly funny about using the typeck phase to gather the base -> impl mapping, and the separate code paths for traits vs. "real" bases feels like it could be avoided -- but it seems to work.
As always, open to suggestions if there's a better way to accomplish what I'm trying to do.
@catamorphism r?
fail!() used to require owned strings but can handle static strings
now. Also, it can pass its arguments to fmt!() on its own, no need for
the caller to call fmt!() itself.
I believe this patch incorporates all expected syntax changes from extern
function reform (#3678). You can now write things like:
extern "<abi>" fn foo(s: S) -> T { ... }
extern "<abi>" mod { ... }
extern "<abi>" fn(S) -> T
The ABI for foreign functions is taken from this syntax (rather than from an
annotation). We support the full ABI specification I described on the mailing
list. The correct ABI is chosen based on the target architecture.
Calls by pointer to C functions are not yet supported, and the Rust type of
crust fns is still *u8.
r? @nikomatsakis The typechecker previously passed around a boolean return flag to
indicate whether it saw something with type _|_ (that is, something
it knows at compile-time will definitely diverge) and also had some
manual checks for the `ty_err` pseudo-type that represents a previous
type error. This was because the typing rules implemented by the
typechecker didn't properly propagate _|_ and ty_err. I fixed it.
This also required changing expected error messages in a few tests,
as now we're printing out fewer derived errors -- in fact, at this
point we should print out no derived errors, so report any that
you see (ones that include "[type error]") as bugs.
The typechecker previously passed around a boolean return flag to
indicate whether it saw something with type _|_ (that is, something
it knows at compile-time will definitely diverge) and also had some
manual checks for the `ty_err` pseudo-type that represents a previous
type error. This was because the typing rules implemented by the
typechecker didn't properly propagate _|_ and ty_err. I fixed it.
This also required changing expected error messages in a few tests,
as now we're printing out fewer derived errors -- in fact, at this
point we should print out no derived errors, so report any that
you see (ones that include "[type error]") as bugs.
LinearMap is quite a bit faster, and is fully owned/sendable without
requiring copies. The older std::map also doesn't use explicit self and
relies on mutable fields.
Add a new method_super origin for supertrait methods. Also make
coherence create a table that maps pairs of trait IDs and self types
to impl IDs, so that it's possible to check a supertrait method
knowing only its index in its trait's methods (without knowing all
supertraits for a given trait).
r=nmatsakis and graydon -- with hope, we'll revamp all of this code as
per #4678, but for now this fixes the bug.
Closes#3979
"Dual impls" are impls that are both type implementations and trait
implementations. They can lead to ambiguity and so this patch removes them
from the language.
This also enforces coherence rules. Without this patch, records can implement
traits not defined in the current crate. This patch fixes this, and updates
all of rustc to adhere to the new enforcement. Most of this patch is fixing
rustc to obey the coherence rules, which involves converting a bunch of records
to structs.
def-id we have, so that the inliner can distinguish between external and
internal def-ids. Also add some comments explaining the distinction!
Fixes#4516.
r=graydon
- Make `extern fn()` assignable to any closure type, rather than
a subtype.
- Remove unused int_ty_set and float_ty_set
- Refactor variable unification and make it more DRY
- Do fn sub/lub/glb on the level of fn_sig
- Rename infer::to_str::ToStr to infer::to_str::InferStr
- Capitalize names of various types
- Correct hashing of FnMeta
- Convert various records-of-fns into structs-of-fns. This is both
eliminating use of deprecated features and more forwards compatible
with fn reform.
r=pcwalton