Avoid panic_bounds_check in fmt::write.
Writing any fmt::Arguments would trigger the inclusion of usize formatting and padding code in the resulting binary, because indexing used in fmt::write would generate code using panic_bounds_check, which prints the index and length.
These bounds checks are not necessary, as fmt::Arguments never contains any out-of-bounds indexes.
This change replaces them with unsafe get_unchecked, to reduce the amount of generated code, which is especially important for embedded targets.
---
Demonstration of the size of and the symbols in a 'hello world' no_std binary:
<details>
<summary>Source code</summary>
```rust
#![feature(lang_items)]
#![feature(start)]
#![no_std]
use core::fmt;
use core::fmt::Write;
#[link(name = "c")]
extern "C" {
#[allow(improper_ctypes)]
fn write(fd: i32, s: &str) -> isize;
fn exit(code: i32) -> !;
}
struct Stdout;
impl fmt::Write for Stdout {
fn write_str(&mut self, s: &str) -> fmt::Result {
unsafe { write(1, s) };
Ok(())
}
}
#[start]
fn main(_argc: isize, _argv: *const *const u8) -> isize {
let _ = writeln!(Stdout, "Hello World");
0
}
#[lang = "eh_personality"]
fn eh_personality() {}
#[panic_handler]
fn panic(_: &core::panic::PanicInfo) -> ! {
unsafe { exit(1) };
}
```
</details>
Before:
```
text data bss dec hex filename
6059 736 8 6803 1a93 before
```
```
0000000000001e00 T <T as core::any::Any>::type_id
0000000000003dd0 D core::fmt::num::DEC_DIGITS_LUT
0000000000001ce0 T core::fmt::num:👿:<impl core::fmt::Display for u64>::fmt
0000000000001ce0 T core::fmt::num:👿:<impl core::fmt::Display for usize>::fmt
0000000000001370 T core::fmt::write
0000000000001b30 t core::fmt::Formatter::pad_integral::write_prefix
0000000000001660 T core::fmt::Formatter::pad_integral
0000000000001350 T core::ops::function::FnOnce::call_once
0000000000001b80 t core::ptr::drop_in_place
0000000000001120 t core::ptr::drop_in_place
0000000000001c50 t core::iter::adapters::zip::Zip<A,B>::new
0000000000001c90 t core::iter::adapters::zip::Zip<A,B>::new
0000000000001b90 T core::panicking::panic_bounds_check
0000000000001c10 T core::panicking::panic_fmt
0000000000001130 t <&mut W as core::fmt::Write>::write_char
0000000000001200 t <&mut W as core::fmt::Write>::write_fmt
0000000000001250 t <&mut W as core::fmt::Write>::write_str
```
After:
```
text data bss dec hex filename
3068 600 8 3676 e5c after
```
```
0000000000001360 T core::fmt::write
0000000000001340 T core::ops::function::FnOnce::call_once
0000000000001120 t core::ptr::drop_in_place
0000000000001620 t core::iter::adapters::zip::Zip<A,B>::new
0000000000001660 t core::iter::adapters::zip::Zip<A,B>::new
0000000000001130 t <&mut W as core::fmt::Write>::write_char
0000000000001200 t <&mut W as core::fmt::Write>::write_fmt
0000000000001250 t <&mut W as core::fmt::Write>::write_str
```
Update tests to remove old numeric constants
Part of #68490.
Care has been taken to leave the old consts where appropriate, for testing backcompat regressions, module shadowing, etc. The intrinsics docs were accidentally referring to some methods on f64 as std::f64, which I changed due to being contrary with how we normally disambiguate the shadow module from the primitive. In one other place I changed std::u8 to std::ops since it was just testing path handling in macros.
For places which have legitimate uses of the old consts, deprecated attributes have been optimistically inserted. Although currently unnecessary, they exist to emphasize to any future deprecation effort the necessity of these specific symbols and prevent them from being accidentally removed.
Part of #68490.
Care has been taken to leave the old consts where appropriate, for testing backcompat regressions, module shadowing, etc. The intrinsics docs were accidentally referring to some methods on f64 as std::f64, which I changed due to being contrary with how we normally disambiguate the shadow module from the primitive. In one other place I changed std::u8 to std::ops since it was just testing path handling in macros.
For places which have legitimate uses of the old consts, deprecated attributes have been optimistically inserted. Although currently unnecessary, they exist to emphasize to any future deprecation effort the necessity of these specific symbols and prevent them from being accidentally removed.
BTreeMap: try to enhance various comments
All in internal documentation, propagating the "key-value pair" notation from public documentation.
r? ``@Mark-Simulacrum``
Require allocator to be static for boxed `Pin`-API
Allocators has to retain their validity until the instance and all of its clones are dropped. When pinning a value, it must live forever, thus, the allocator requires a `'static` lifetime for pinning a value. [Example from reddit](https://www.reddit.com/r/rust/comments/jymzdw/the_story_continues_vec_now_supports_custom/gd7qak2?utm_source=share&utm_medium=web2x&context=3):
```rust
let alloc = MyAlloc(/* ... */);
let pinned = Box::pin_in(42, alloc);
mem::forget(pinned); // Now `value` must live forever
// Otherwise `Pin`'s invariants are violated, storage invalidated
// before Drop was called.
// borrow of `memory` can end here, there is no value keeping it.
drop(alloc); // Oh, value doesn't live forever.
```
Rename `optin_builtin_traits` to `auto_traits`
They were originally called "opt-in, built-in traits" (OIBITs), but
people realized that the name was too confusing and a mouthful, and so
they were renamed to just "auto traits". The feature flag's name wasn't
updated, though, so that's what this PR does.
There are some other spots in the compiler that still refer to OIBITs,
but I don't think changing those now is worth it since they are internal
and not particularly relevant to this PR.
Also see <https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/opt-in.2C.20built-in.20traits.20(auto.20traits).20feature.20name>.
r? `@oli-obk` (feel free to re-assign if you're not the right reviewer for this)
Proposal to add Peekable::peek_mut
A "peekable" iterator has a `peek()`-method which provides an immutable reference to the next item. We currently do not have a method to modify that item, which we could easily add via a `peek_mut()`. See the test for a use-case (alike to my original use case), where a "pristine" iterator is passed on after modifying its state via `peek_mut()`.
If there is interest in this, I can expand on the tests and docs.
Document unsafety in core::slice::memchr
Contributes to #66219
Note sure if that's good enough, especially for the `align_to` call.
The docs only mention transmuting and I don't think that everything related to reference lifetimes and state validity mentioned in the [nomicon](https://doc.rust-lang.org/nomicon/transmutes.html) are relevant here.
Fix typo in `keyword` docs for traits
This PR fixes a small typo in the `keyword_docs.rs` file, describing the differences between the 2015 and 2018 editions of traits.
They were originally called "opt-in, built-in traits" (OIBITs), but
people realized that the name was too confusing and a mouthful, and so
they were renamed to just "auto traits". The feature flag's name wasn't
updated, though, so that's what this PR does.
There are some other spots in the compiler that still refer to OIBITs,
but I don't think changing those now is worth it since they are internal
and not particularly relevant to this PR.
Also see <https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/opt-in.2C.20built-in.20traits.20(auto.20traits).20feature.20name>.
Qualify `panic!` as `core::panic!` in non-built-in `core` macros
Fixes#78333.
-----
Otherwise code like this
#![no_implicit_prelude]
fn main() {
::std::todo!();
::std::unimplemented!();
}
will fail to compile, which is unfortunate and presumably unintended.
This changes many invocations of `panic!` in a `macro_rules!` definition
to invocations of `$crate::panic!`, which makes the invocations hygienic.
Note that this does not make the built-in macro `assert!` hygienic.
Otherwise code like this
#![no_implicit_prelude]
fn main() {
::std::todo!();
::std::unimplemented!();
}
will fail to compile, which is unfortunate and presumably unintended.
This changes many invocations of `panic!` in a `macro_rules!` definition
to invocations of `$crate::panic!`, which makes the invocations hygienic.
Note that this does not make the built-in macro `assert!` hygienic.
Drop support for all cloudabi targets
`cloudabi` is a tier-3 target, and [it is no longer being maintained upstream][no].
This PR drops supports for cloudabi targets. Those targets are:
* aarch64-unknown-cloudabi
* armv7-unknown-cloudabi
* i686-unknown-cloudabi
* x86_64-unknown-cloudabi
Since this drops supports for a target, I'd like somebody to tag `relnotes` label to this PR.
Some other issues:
* The tidy exception for `cloudabi` crate is still remained because
* `parking_lot v0.9.0` and `parking_lot v0.10.2` depends on `cloudabi v0.0.3`.
* `parking_lot v0.11.0` depends on `cloudabi v0.1.0`.
[no]: https://github.com/NuxiNL/cloudabi#note-this-project-is-unmaintained
Rollup of 10 pull requests
Successful merges:
- #76829 (stabilize const_int_pow)
- #79080 (MIR visitor: Don't treat debuginfo field access as a use of the struct)
- #79236 (const_generics: assert resolve hack causes an error)
- #79287 (Allow using generic trait methods in `const fn`)
- #79324 (Use Option::and_then instead of open-coding it)
- #79325 (Reduce boilerplate with the `?` operator)
- #79330 (Fix typo in comment)
- #79333 (doc typo)
- #79337 (Use Option::map instead of open coding it)
- #79343 (Add my (`@flip1995)` work mail to the mailmap)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Change slice::to_vec to not use extend_from_slice
I saw this [Zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/String.3A.3Afrom%28.26str%29.20wonky.20codegen/near/216164455), and didn't see any update from it, so I thought I'd try to fix it. This converts `to_vec` to no longer use `extend_from_slice`, but relies on knowing that the allocated capacity is the same size as the input.
[Godbolt new v1](https://rust.godbolt.org/z/1bcWKG)
[Godbolt new v2 w/ drop guard](https://rust.godbolt.org/z/5jn76K)
[Godbolt old version](https://rust.godbolt.org/z/e4ePav)
After some amount of iteration, there are now two specializations for `to_vec`, one for `Copy` types that use memcpy, and one for clone types which is the original from this PR.
This is then used inside of `impl<T: Clone> FromIterator<Iter::Slice<T>> for Vec<T>` which is essentially equivalent to `&[T] -> Vec<T>`, instead of previous specialization of the `extend` function. This is because extend has to reason more about existing capacity by calling `reserve` on an existing vec, and thus produces worse asm.
Downsides: This allocates the exact capacity, so I think if many items are added to this `Vec` after, it might need to allocate whereas extending may not. I also noticed the number of faults went up in the benchmarks, but not sure where from exactly.