Set "Dwarf Version" to 2 on OS X to avoid toolchain incompatibility, and
set "Debug Info Version" to prevent debug info from being stripped from
bitcode.
Fixes#11352.
Set "Dwarf Version" to 2 on OS X to avoid toolchain incompatibility, and
set "Debug Info Version" to prevent debug info from being stripped from
bitcode.
Fixes#11352.
cc #7621.
See the commit message. I'm not sure if we should merge this now, or wait until we can write `Clone::clone(x)` which will directly solve the above issue with perfect error messages.
This unfortunately changes an error like
error: mismatched types: expected `&&NotClone` but found `&NotClone`
into
error: type `NotClone` does not implement any method in scope named `clone`
In two ways:
- for a plain `fail!(a)` we make the generic part of `begin_unwind` as small as possible (makes `fn main() { fail!() }` compile 2-3x faster, due to less monomorphisation bloat)
- for `fail!("format {}", "string")`, we avoid touching the generics completely by doing the formatting in a specialised function, which (with optimisations) saves a function call at the call-site of `fail!`. (This one has significantly less benefit than the first.)
Non-exhaustive change list:
* `self` is now present in argument lists (modulo type-checking code I don't trust myself to refactor)
* methods have the same calling convention as bare functions (including the self argument)
* the env param is gone from all bare functions (and methods), only used by closures and `proc`s
* bare functions can only be coerced to closures and `proc`s if they are statically resolved, as they now require creating a wrapper specific to that function, to avoid indirect wrappers (equivalent to `impl<..Args, Ret> Fn<..Args, Ret> for fn(..Args) -> Ret`) that might not be optimizable by LLVM and don't work for `proc`s
* refactored some `trans::closure` code, leading to the removal of `trans::glue::make_free_glue` and `ty_opaque_closure_ptr`
This ends up saving a single `call` instruction in the optimised code,
but saves a few hundred lines of non-optimised IR for `fn main() {
fail!("foo {}", "bar"); }` (comparing against the minimal generic
baseline from the parent commit).
I'd forgotten to update them when I changed this a while ago; it now displays error messages linked to the struct/variant field, rather than the `#[deriving(Trait)]` line, for all traits.
This also adds a very large number of autogenerated tests. I can easily remove/tone down that commit if necessary.
This splits the vast majority of the code path taken by
`fail!()` (`begin_unwind`) into a separate non-generic inline(never)
function, so that uses of `fail!()` only monomorphise a small amount of
code, reducing code bloat and making very small crates compile faster.
This makes error messages about (e.g.) `#[deriving(Clone)] struct Foo {
x: Type }` point at `x: Type` rather than `Clone` in the header (while
still referring to the `#[deriving(Clone)]` in the expansion info).
It was decided a long, long time ago that libextra should not exist, but rather its modules should be split out into smaller independent libraries maintained outside of the compiler itself. The theory was to use `rustpkg` to manage dependencies in order to move everything out of the compiler, but maintain an ease of usability.
Sadly, the work on `rustpkg` isn't making progress as quickly as expected, but the need for dissolving libextra is becoming more and more pressing. Because of this, we've thought that a good interim solution would be to simply package more libraries with the rust distribution itself. Instead of dissolving libextra into libraries outside of the mozilla/rust repo, we can dissolve libraries into the mozilla/rust repo for now.
Work on this has been excruciatingly painful in the past because the makefiles are completely opaque to all but a few. Adding a new library involved adding about 100 lines spread out across 8 files (incredibly error prone). The first commit of this pull request targets this pain point. It does not rewrite the build system, but rather refactors large portions of it. Afterwards, adding a new library is as simple as modifying 2 lines (easy, right?). The build system automatically keeps track of dependencies between crates (rust *and* native), promotes binaries between stages, tracks dependencies of installed tools, etc, etc.
With this newfound buildsystem power, I chose the `extra::flate` module as the first candidate for removal from libextra. While a small module, this module is relative complex in that is has a C dependency and the compiler requires it (messing with the dependency graph a bit). Albeit I modified more than 2 lines of makefiles to accomodate libflate (the native dependency required 2 extra lines of modifications), but the removal process was easy to do and straightforward.
---
Testing-wise, I've cross-compiled, run tests, built some docs, installed, uninstalled, etc. I'm still working out a few kinks, and I'm sure that there's gonna be built system issues after this, but it should be working well for basic use!
cc #8784
This is hopefully the beginning of the long-awaited dissolution of libextra.
Using the newly created build infrastructure for building libraries, I decided
to move the first module out of libextra.
While not being a particularly meaty module in and of itself, the flate module
is required by rustc and additionally has a native C dependency. I was able to
very easily split out the C dependency from rustrt, update librustc, and
magically everything gets installed to the right locations and built
automatically.
This is meant to be a proof-of-concept commit to how easy it is to remove
modules from libextra now. I didn't put any effort into modernizing the
interface of libflate or updating it other than to remove the one glob import it
had.
See #11522, but the idea is for private structs to have private fields by default, whereas public structs will continue to have public fields by default.