HIR typeck tries to figure out which casts are trivial by doing them as
coercions and seeing whether this works. Since HIR typeck is oblivious
of lifetimes, this doesn't work for pointer casts that only change the
lifetime of the pointee, which are, as borrowck will tell you, not
trivial.
This change makes it so that raw pointer casts are never considered
trivial.
This also incidentally fixes the "trivial cast" lint false positive on
the same code. Unfortunately, "trivial cast" lints are now never emitted
on raw pointer casts, even if they truly are trivial. This could be
fixed by also doing the lint in borrowck for raw pointers specifically.
Require target features to match exactly during inlining
In general it is not correct to inline a callee with a target features
that are subset of the callee. Require target features to match exactly
during inlining.
The exact match could be potentially relaxed, but this would require
identifying specific feature that are allowed to differ, those that need
to match, and those that can be present in caller but not in callee.
This resolves MIR part of #116573. For other concerns with respect to
the previous implementation also see areInlineCompatible in LLVM.
In general it is not correct to inline a callee with a target features
that are subset of the callee. Require target features to match exactly
during inlining.
The exact match could be potentially relaxed, but this would require
identifying specific feature that are allowed to differ, those that need
to match, and those that can be present in caller but not in callee.
This resolves MIR part of #116573. For other concerns with respect to
the previous implementation also see areInlineCompatible in LLVM.
Separate move path tracking between borrowck and drop elaboration.
The primary goal of this PR is to skip creating a `MovePathIndex` for path that do not need dropping in drop elaboration.
The 2 first commits are cleanups.
The next 2 commits displace `move` errors from move-path builder to borrowck. Move-path builder keeps the same logic, but does not carry error information any more.
The remaining commits allow to filter `MovePathIndex` creation according to types. This is used in drop elaboration, to avoid computing dataflow for paths that do not need dropping.
Even though expression details are now stored in the info structure, we still
need to inject `ExpressionUsed` statements into MIR, because if one is missing
during codegen then we know that it was optimized out and we can remap all of
its associated code regions to zero.
Previously, mappings were attached to individual coverage statements in MIR.
That necessitated special handling in MIR optimizations to avoid deleting those
statements, since otherwise codegen would be unable to reassemble the original
list of mappings.
With this change, a function's list of mappings is now attached to its MIR
body, and survives intact even if individual statements are deleted by
optimizations.
coverage: Allow each coverage statement to have multiple code regions
The original implementation of coverage instrumentation was built around the assumption that a coverage counter/expression would be associated with *up to one* code region. When it was discovered that *multiple* regions would sometimes need to share a counter, a workaround was found: for the remaining regions, the instrumentor would create a fresh expression that adds zero to the existing counter/expression.
That got the job done, but resulted in some awkward code, and produces unnecessarily complicated coverage maps in the final binary.
---
This PR removes that tension by changing `StatementKind::Coverage`'s code region field from `Option<CodeRegion>` to `Vec<CodeRegion>`.
The changes on the codegen side are fairly straightforward. As long as each `CoverageKind::Counter` only injects one `llvm.instrprof.increment`, the rest of coverage codegen is happy to handle multiple regions mapped to the same counter/expression, with only minor option-to-vec adjustments.
On the instrumentor/mir-transform side, we can get rid of the code that creates extra (x + 0) expressions. Instead we gather all of the code regions associated with a single BCB, and inject them all into one coverage statement.
---
There are several patches here but they can be divided in to three phases:
- Preparatory work
- Actually switching over to multiple regions per coverage statement
- Cleaning up
So viewing the patches individually may be easier.
If a BCB has more than one code region, those extra regions can now all be
stored in the same coverage statement, instead of being stored in additional
statements.
Reveal opaque types before drop elaboration
fixes https://github.com/rust-lang/rust/issues/113594
r? `@cjgillot`
cc `@JakobDegen`
This pass was introduced in https://github.com/rust-lang/rust/pull/110714
I moved it before drop elaboration (which only cares about the hidden types of things, not the opaque TAIT or RPIT type) and set it to run unconditionally (instead of depending on the optimization level and whether the inliner is active)
adjust how closure/generator types are printed
I saw `&[closure@$DIR/issue-20862.rs:2:5]` and I thought it is a slice type, because that's usually what `&[_]` is... it took me a while to realize that this is just a confusing printer and actually there's no slice. Let's use something that cannot be mistaken for a regular type.
rename mir::Constant -> mir::ConstOperand, mir::ConstKind -> mir::Const
Also, be more consistent with the `to/eval_bits` methods... we had some that take a type and some that take a size, and then sometimes the one that takes a type is called `bits_for_ty`.
Turns out that `ty::Const`/`mir::ConstKind` carry their type with them, so we don't need to even pass the type to those `eval_bits` functions at all.
However this is not properly consistent yet: in `ty` we have most of the methods on `ty::Const`, but in `mir` we have them on `mir::ConstKind`. And indeed those two types are the ones that correspond to each other. So `mir::ConstantKind` should actually be renamed to `mir::Const`. But what to do with `mir::Constant`? It carries around a span, that's really more like a constant operand that appears as a MIR operand... it's more suited for `syntax.rs` than `consts.rs`, but the bigger question is, which name should it get if we want to align the `mir` and `ty` types? `ConstOperand`? `ConstOp`? `Literal`? It's not a literal but it has a field called `literal` so it would at least be consistently wrong-ish...
``@oli-obk`` any ideas?
move things out of mir/mod.rs
This moves a bunch of things out of `mir/mod.rs`:
- all const-related stuff to a new file consts.rs
- all statement/place/operand-related stuff to a new file statement.rs
- all pretty-printing related stuff to pretty.rs
`mod.rs` started out with 3100 lines and ends up with 1600. :)
Also there was some pretty-printing stuff in terminator.rs, that also got moved to pretty.rs, and I reordered things in pretty.rs so that it can be grouped by functionality.
Only the commit "use pretty_print_const_value from MIR constant 'extra' printing" has any behavior changes; it resolves the issue of having a fancy and a very crude pretty-printer for `ConstValue`.
r? `@oli-obk`
The `Debug` impl for `Ty` just calls the `Display` impl for `Ty`. This
is surprising and annoying. In particular, it means `Debug` doesn't show
as much information as `Debug` for `TyKind` does. And `Debug` is used in
some user-facing error messages, which seems bad.
This commit changes the `Debug` impl for `Ty` to call the `Debug` impl
for `TyKind`. It also does a number of follow-up changes to preserve
existing output, many of which involve inserting
`with_no_trimmed_paths!` calls. It also adds `Display` impls for
`UserType` and `Canonical`.
Some tests have changes to expected output:
- Those that use the `rustc_abi(debug)` attribute.
- Those that use the `EMIT_MIR` annotation.
In each case the output is slightly uglier than before. This isn't
ideal, but it's pretty weird (particularly for the attribute) that the
output is using `Debug` in the first place. They're fairly obscure
attributes (I hadn't heard of them) so I'm not worried by this.
For `async-is-unwindsafe.stderr`, there is one line that now lacks a
full path. This is a consistency improvement, because all the other
mentions of `Context` in this test lack a path.
Only reachable items might participate in the code generation in the
downstream crates. Omit redundant optimized MIR of unreachable items
from a crate metadata.
Additionally, include reachable closures in reachable set, so that
unreachable closures can be omitted on the same basis.
Remove some wasm/emscripten ignores
I'm planning on landing a few PRs like this that remove ignores that aren't required. This just covers mir-opt and codegen tests.
Add MIR validation for unwind out from nounwind functions + fixes to make validation pass
`@Nilstrieb` This is the MIR validation you asked in https://github.com/rust-lang/rust/pull/112403#discussion_r1222739722.
Two passes need to be fixed to get the validation to pass:
* `RemoveNoopLandingPads` currently unconditionally introduce a resume block (even there is none to begin with!), changed to not do that
* Generator state transform introduces a `assert` which may unwind, and its drop elaboration also introduces many new `UnwindAction`s, so in this case run the AbortUnwindingCalls after the transformation.
I believe this PR should also fixRust-for-Linux/linux#1016, cc `@ojeda`
r? `@Nilstrieb`
Operand types are now tracked explicitly, so there is no need to reserve ID 0
for the special always-zero counter.
As part of the renumbering, this change fixes an off-by-one error in the way
counters were counted by the `coverageinfo` query. As a result, functions
should now have exactly the number of counters they actually need, instead of
always having an extra counter that is never used.
Operand types are now tracked explicitly, so there is no need for expression
IDs to avoid counter IDs by descending from `u32::MAX`. Instead they can just
count up from 0, and can be used directly as indices when necessary.
Because the three kinds of operand are now distinguished explicitly, we no
longer need fiddly code to disambiguate counter IDs and expression IDs based on
the total number of counters/expressions in a function.
This does increase the size of operands from 4 bytes to 8 bytes, but that
shouldn't be a big deal since they are mostly stored inside boxed structures,
and the current coverage code is not particularly size-optimized anyway.
interpret: Unify projections for MPlaceTy, PlaceTy, OpTy
For ~forever, we didn't really have proper shared code for handling projections into those three types. This is mostly because `PlaceTy` projections require `&mut self`: they might have to `force_allocate` to be able to represent a project part-way into a local.
This PR finally fixes that, by enhancing `Place::Local` with an `offset` so that such an optimized place can point into a part of a place without having requiring an in-memory representation. If we later write to that place, we will still do `force_allocate` -- for now we don't have an optimized path in `write_immediate` that would avoid allocation for partial overwrites of immediately stored locals. But in `write_immediate` we have `&mut self` so at least this no longer pollutes all our type signatures.
(Ironically, I seem to distantly remember that many years ago, `Place::Local` *did* have an `offset`, and I removed it to simplify things. I guess I didn't realize why it was so useful... I am also not sure if this was actually used to achieve place projection on `&self` back then.)
The `offset` had type `Option<Size>`, where `None` represent "no projection was applied". This is needed because locals *can* be unsized (when they are arguments) but `Place::Local` cannot store metadata: if the offset is `None`, this refers to the entire local, so we can use the metadata of the local itself (which must be indirect); if a projection gets applied, since the local is indirect, it will turn into a `Place::Ptr`. (Note that even for indirect locals we can have `Place::Local`: when the local appears in MIR, we always start with `Place::Local`, and only check `frame.locals` later. We could eagerly normalize to `Place::Ptr` but I don't think that would actually simplify things much.)
Having done all that, we can finally properly abstract projections: we have a new `Projectable` trait that has the basic methods required for projecting, and then all projection methods are implemented for anything that implements that trait. We can even implement it for `ImmTy`! (Not that we need that, but it seems neat.) The visitor can be greatly simplified; it doesn't need its own trait any more but it can use the `Projectable` trait. We also don't need the separate `Mut` visitor any more; that was required only to reflect that projections on `PlaceTy` needed `&mut self`.
It is possible that there are some more `&mut self` that can now become `&self`... I guess we'll notice that over time.
r? `@oli-obk`
Get `!nonnull` metadata on slice iterators, without `assume`s
This updates the non-ZST paths to read the end pointer through a pointer-to-`NonNull`, so that they all get `!nonnull` metadata.
That means that the last `assume(!ptr.is_null())` can be deleted, without impacting codegen -- the codegen tests confirm the LLVM-IR ends up exactly the same as before.