It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html
This is mostly an incremental change, picking off some uses of
@- or @mut-pointers that can be replaced by references.
Almost all of the builder functions in trans::build are updated,
mostly using `&Block` arguments instead of `@mut Block`.
Use &mut Block and &Block references where possible in the builder
functions in trans::build.
@mut Block remains in a few functions where I could not (not yet at
least) track down the runtime borrowck failures.
std::vec: Sane implementations for connect_vec and concat_vec
Avoid unnecessary copying of subvectors, and calculate the needed space
beforehand. These implementations are simple but better than the
previous.
Also only implement it once, for all `Vector<T>` using:
impl<'self, T: Clone, V: Vector<T>> VectorVector<T> for &'self [V]
Closes#9581
This is broken, and results in poor performance due to the undefined
behaviour in the LLVM IR. LLVM's `mergefunc` is a *much* better way of
doing this since it merges based on the equality of the bytecode.
For example, consider `std::repr`. It generates different code per
type, but is not included in the type bounds of generics.
The `mergefunc` pass works for most of our code but currently hits an
assert on libstd. It is receiving attention upstream so it will be
ready soon, but I don't think removing this broken code should wait any
longer. I've opened #9536 about enabling it by default.
Closes#8651Closes#3547Closes#2537Closes#6971Closes#9222
This is broken, and results in poor performance due to the undefined
behaviour in the LLVM IR. LLVM's `mergefunc` is a *much* better way of
doing this since it merges based on the equality of the bytecode.
For example, consider `std::repr`. It generates different code per
type, but is not included in the type bounds of generics.
The `mergefunc` pass works for most of our code but currently hits an
assert on libstd. It is receiving attention upstream so it will be
ready soon, but I don't think removing this broken code should wait any
longer. I've opened #9536 about enabling it by default.
Closes#8651Closes#3547Closes#2537Closes#6971Closes#9222
If an item is skipped due to it being unreachable or for some optimization, then
it shouldn't be encoded into the metadata (because it wasn't present in the
first place).
I have tried this fix and it seems to work either with single or multiple trait inheritance.
trait Base:Base2 + Base3{
fn foo(&self);
}
trait Base2 {
fn baz(&self);
}
trait Base3{
fn root(&self);
}
trait Super: Base{
fn bar(&self);
}
struct X;
impl Base for X {
fn foo(&self) {
println("base foo");
}
}
impl Base2 for X {
fn baz(&self) {
println("base2 baz");
}
}
impl Base3 for X {
fn root(&self) {
println("base3 root");
}
}
impl Super for X {
fn bar(&self) {
println("super bar");
}
}
fn main() {
let n = X;
let s = &n as &Super;
s.bar();
s.foo(); // super bar
s.baz();
s.root();
}
bmaxa@maxa:~/examples/rust$ rustc error.rs
bmaxa@maxa:~/examples/rust$ ./error
super bar
base foo
base2 baz
base3 root
This solves problem of incorrect indexing into vtable
when method from super trait was called through pointer
to derived trait.
Problem was that offset of super trait vtables
was not calculated at all.
Now it works, correct offset is calculated by
traversing all super traits up to super trait
where method belongs. That is how it is
intended to work.
r? anyone
Part of #7081.
Removed many unnecessary context arguments, turning them into visitors. Removed some @allocation.
If this lands, then I think the only thing left that is unaddressed are:
* the various lint visitors, and
* middle/privacy.rs, which has `impl<'self> Visitor<&'self method_map> for PrivacyVisitor`