The change in b20e748 had the unintended consequence of breaking cross-host
builds as we apparently relied on the incorrect definition of this variable in
the makefiles. That change, however, was required to get tests passing so we
couldn't just revert it.
This commit fixes the underlying bug by leaving the "more correct" definition of
`LD_LIBRARY_PATH_ENV_TARGETDIR` (also fixing it with a hardcoded reference to
`CFG_BUILD`) and updating the `RPATH_VAR` definition below. Turned out we
already had special-casing logic for passing `--cfg stage1` during the
well-we-print-this-as-stage0 build of a cross-host. That logic was just updated
to pull from a different variable as opposed to relying on the definition of
that variable to accommodate this.
Closes#32568
This should re-enable all external builds of crates with the same name. Right
now Cargo doesn't pass `-C metadata` for the top-level library being compiled,
so if that library is called `libc`, for example, then it won't be able to link
to the standard library which *also* has a `libc` library compiled without `-C
metadata`. This can result in naming conflicts which need to be resolved.
By passing `-C metadata` to the in-tree crates we ship it should add some extra
salt to all symbol names to ensure that they don't collide.
emit (via debug!) scary message from `fn borrowck_mir` until basic
prototype is in place.
Gather children of move paths and set their kill bits in
dataflow. (Each node has a link to the child that is first among its
siblings.)
Hooked in libgraphviz based rendering, including of borrowck dataflow
state.
doing this well required some refactoring of the code, so I cleaned it
up more generally (adding comments to explain what its trying to do
and how it is doing it).
Update: this newer version addresses most review comments (at least
the ones that were largely mechanical changes), but I left the more
interesting revisions to separate followup commits (in this same PR).
typestrong const integers
~~It would be great if someone could run crater on this PR, as this has a high danger of breaking valid code~~ Crater ran. Good to go.
----
So this PR does a few things:
1. ~~const eval array values when const evaluating an array expression~~
2. ~~const eval repeat value when const evaluating a repeat expression~~
3. ~~const eval all struct and tuple fields when evaluating a struct/tuple expression~~
4. remove the `ConstVal::Int` and `ConstVal::Uint` variants and replace them with a single enum (`ConstInt`) which has variants for all integral types
* `usize`/`isize` are also enums with variants for 32 and 64 bit. At creation and various usage steps there are assertions in place checking if the target bitwidth matches with the chosen enum variant
5. enum discriminants (`ty::Disr`) are now `ConstInt`
6. trans has its own `Disr` type now (newtype around `u64`)
This obviously can't be done without breaking changes (the ones that are noticable in stable)
We could probably write lints that find those situations and error on it for a cycle or two. But then again, those situations are rare and really bugs imo anyway:
```rust
let v10 = 10 as i8;
let v4 = 4 as isize;
assert_eq!(v10 << v4 as usize, 160 as i8);
```
stops compiling because 160 is not a valid i8
```rust
struct S<T, S> {
a: T,
b: u8,
c: S
}
let s = S { a: 0xff_ff_ff_ffu32, b: 1, c: 0xaa_aa_aa_aa as i32 };
```
stops compiling because `0xaa_aa_aa_aa` is not a valid i32
----
cc @eddyb @pnkfelix
related: https://github.com/rust-lang/rfcs/issues/1071
Add a link validator to rustbuild
This commit was originally targeted at just adding a link checking script to the rustbuild system. This ended up snowballing a bit to extend rustbuild to be amenable to various tools we have as part of the build system in general.
There's a new `src/tools` directory which has a number of scripts/programs that are purely intended to be used as part of the build system and CI of this repository. This is currently inhabited by rustbook, the error index generator, and a new linkchecker script added as part of this PR. I suspect that more tools like compiletest, tidy scripts, snapshot scripts, etc will migrate their way into this directory over time.
The commit which adds the error index generator shows the steps necessary to add new tools to the build system, namely:
1. New steps are defined for building the tool and running the tool
2. The dependencies are configured
3. The steps are implemented
In terms of the link checker, these commits do a few things:
* A new `src/tools/linkchecker` script is added. This will read an entire documentation tree looking for broken relative links (HTTP links aren't followed yet).
* A large number of broken links throughout the documentation were fixed. Many of these were just broken when viewed from core as opposed to std, but were easily fixed.
* A few rustdoc bugs here and there were fixed
rustc: Add an i586-pc-windows-msvc target
Similarly to #31629 where an i586-unknown-linux-gnu target was added, there is
sometimes a desire to compile for x86 Windows as well where SSE2 is disabled.
This commit mirrors the i586-unknown-linux-gnu target and simply adds a variant
for Windows as well.
This is motivated by a recent [Gecko bug][ff] where crashes were seen on 32-bit
Windows due to users having CPUs that don't support SSE2 instructions. It was
requested that we could have non-SSE2 builds of the standard library available
so they could continue to use vanilla releases and nightlies.
[ff]: https://bugzilla.mozilla.org/show_bug.cgi?id=1253202
mk: Distribute fewer TARGET_CRATES
Right now everything in TARGET_CRATES is built by default for all non-fulldeps
tests and is distributed by default for all target standard library packages.
Currenly this includes a number of unstable crates which are rarely used such as
`graphviz` and `rbml`>
This commit trims down the set of `TARGET_CRATES`, moves a number of tests to
`*-fulldeps` as a result, and trims down the dependencies of libtest so we can
distribute fewer crates in the `rust-std` packages.
Right now everything in TARGET_CRATES is built by default for all non-fulldeps
tests and is distributed by default for all target standard library packages.
Currenly this includes a number of unstable crates which are rarely used such as
`graphviz` and `rbml`>
This commit trims down the set of `TARGET_CRATES`, moves a number of tests to
`*-fulldeps` as a result, and trims down the dependencies of libtest so we can
distribute fewer crates in the `rust-std` packages.
Adding -Wno-error is more reliable and simple than trying to modify existing
flags. We've been using this in Debian already for the past few releases.
Making this change also encourages future maintainers towards "best practises".
Also take the opportunity to use the same method at all places in the file.
Adding -Wno-error is more reliable and simple than trying to modify existing
flags. We've been using this in Debian already for the past few releases.
Making this change also encourages future maintainers towards "best practises".
Also take the opportunity to use the same method at all places in the file.
Similarly to #31629 where an i586-unknown-linux-gnu target was added, there is
sometimes a desire to compile for x86 Windows as well where SSE2 is disabled.
This commit mirrors the i586-unknown-linux-gnu target and simply adds a variant
for Windows as well.
This is motivated by a recent [Gecko bug][ff] where crashes were seen on 32-bit
Windows due to users having CPUs that don't support SSE2 instructions. It was
requested that we could have non-SSE2 builds of the standard library available
so they could continue to use vanilla releases and nightlies.
[ff]: https://bugzilla.mozilla.org/show_bug.cgi?id=1253202
The `--disable-jemalloc` configure option has a failure mode where it will
create a distribution that is not compatible with other compilers. For example
the nightly for Linux will assume that it will link to jemalloc by default as
an allocator for executable crates. If, however, a standard library is used
which was built via `./configure --disable-jemalloc` then this will fail
because the jemalloc crate wasn't built.
While this seems somewhat reasonable as a niche situation, the same mechanism is
used for disabling jemalloc for platforms that just don't support it. For
example if the rumprun target is compiled then the sibiling Linux target *also*
doesn't have jemalloc. This is currently a problem for our cross-build nightlies
which build many targets. If rumprun is also built, it will disable jemalloc for
all targets, which isn't desired.
This commit moves the platform-specific disabling of jemalloc as hardcoded logic
into the makefiles that is scoped per-platform. This way when configuring
multiple targets **without the `--disable-jemalloc` option specified** all
targets will get jemalloc as they should.
The `--disable-jemalloc` configure option has a failure mode where it will
create a distribution that is not compatible with other compilers. For example
the nightly for Linux will assume that it will link to jemalloc by default as
an allocator for executable crates. If, however, a standard library is used
which was built via `./configure --disable-jemalloc` then this will fail
because the jemalloc crate wasn't built.
While this seems somewhat reasonable as a niche situation, the same mechanism is
used for disabling jemalloc for platforms that just don't support it. For
example if the rumprun target is compiled then the sibiling Linux target *also*
doesn't have jemalloc. This is currently a problem for our cross-build nightlies
which build many targets. If rumprun is also built, it will disable jemalloc for
all targets, which isn't desired.
This commit moves the platform-specific disabling of jemalloc as hardcoded logic
into the makefiles that is scoped per-platform. This way when configuring
multiple targets **without the `--disable-jemalloc` option specified** all
targets will get jemalloc as they should.
You can now group tests into directories like `run-pass/borrowck` or `compile-fail/borrowck`. By default, all `.rs` files within any directory are considered tests: to ignore some directory, create a placeholder file called `compiletest-ignore-dir` (I had to do this for several existing directories).
r? @alexcrichton
cc @brson
Right now the compiler's we're using actually default to armv7/thumb2 I believe,
so this should help push them back to what the arm-unknown-linux-* targets are
for. This at least matches that clang does for the `arm-unknown-linux-gnueabihf`
target which is to map it to an armv6 architecture.
Closes#31787
Right now the compiler's we're using actually default to armv7/thumb2 I believe,
so this should help push them back to what the arm-unknown-linux-* targets are
for. This at least matches that clang does for the `arm-unknown-linux-gnueabihf`
target which is to map it to an armv6 architecture.
Closes#31787
use CXX value found at configure time inside run-make tests.
it permits OpenBSD to pass llvm-module-pass test (which use CXX
variable).
r? @alexcrichton
This is because the tool compiler passes the name of the tool
as a command line `--cfg`. The improved session config parser
is stricter and no longer permits invalid meta items (such as
"error-index-generator").
Now that we properly only link in jemalloc when building executables, we have
far less to worry about in terms of polluting the global namespace with the
`free` and `malloc` symbols on Linux. This commit will primarily allow LLVM to
use jemalloc so the compiler will only be using one allocator overall.
Locally this took compile time for libsyntax from 95 seconds to 89 (a 6%
improvement).
r? @brson
cc @alexcrichton
I still need to add error code explanation test with this, but I can't figure out a way to generate the `.md` files in order to test example source codes.
Will fix#27328.
When building with Cargo we need to detect `feature = "jemalloc"` to enable
jemalloc, so propagate this same change to the build system to pass the right
`--cfg` argument.
Backtraces, and the compilation of libbacktrace for asmjs, are disabled.
This port doesn't use jemalloc so, like pnacl, it disables jemalloc *for all targets*
in the configure file.
It disables stack protection.
Without this patch, `compiler-rt` fails to build when the `CFLAGS` environment variable contains a `-Werror=*` flag (for example `-Werror=format-security`).
The build system was removing only the `-Werror` part from the flag, thus passing an unrecognized `=*` (for example `=format-security`) argument to gcc.
This pull request adds support for [Illumos](http://illumos.org/)-based operating systems: SmartOS, OpenIndiana, and others. For now it's x86-64 only, as I'm not sure if 32-bit installations are widespread. This PR is based on #28589 by @potatosalad, and also closes#21000, #25845, and #25846.
Required changes in libc are already merged: https://github.com/rust-lang-nursery/libc/pull/138
Here's a snapshot required to build a stage0 compiler:
https://s3-eu-west-1.amazonaws.com/nbaksalyar/rustc-sunos-snapshot.tar.gz
It passes all checks from `make check`.
There are some changes I'm not quite sure about, e.g. macro usage in `src/libstd/num/f64.rs` and `DirEntry` structure in `src/libstd/sys/unix/fs.rs`, so any comments on how to rewrite it better would be greatly appreciated.
Also, LLVM configure script might need to be patched to build it successfully, or a pre-built libLLVM should be used. Some details can be found here: https://llvm.org/bugs/show_bug.cgi?id=25409
Thanks!
r? @brson
Currently any compilation to MIPS spits out the warning:
'generic' is not a recognized processor for this target (ignoring processor)
Doesn't make for a great user experience! We don't encounter this in the normal
bootstrap because the cpu/feature set are set by the makefiles. Instead let's
just propagate these to the defaults for the entire target all the time (still
overridable from the command line) and prevent warnings from being emitted by
default.
This target covers MIPS devices that run the trunk version of OpenWRT.
The x86_64-unknown-linux-musl target always links statically to C libraries. For
the mips(el)-unknown-linux-musl target, we opt for dynamic linking (like most of
other targets do) to keep binary size down.
As for the C compiler flags used in the build system, we use the same flags used
for the mips(el)-unknown-linux-gnu target.
r? @alexcrichton
I don't believe these test cases have served any purpose in years.
The shootout benchmarks are now upstreamed. A new benchmark suite
should rather be maintained out of tree.
r? @nikomatsakis
Currently any compilation to MIPS spits out the warning:
'generic' is not a recognized processor for this target (ignoring processor)
Doesn't make for a great user experience! We don't encounter this in the normal
bootstrap because the cpu/feature set are set by the makefiles. Instead let's
just propagate these to the defaults for the entire target all the time (still
overridable from the command line) and prevent warnings from being emitted by
default.
These commits perform a few high-level changes with the goal of enabling i686 MSVC unwinding:
* LLVM is upgraded to pick up the new exception handling instructions and intrinsics for MSVC. This puts us somewhere along the 3.8 branch, but we should still be compatible with LLVM 3.7 for non-MSVC targets.
* All unwinding for MSVC targets (both 32 and 64-bit) are implemented in terms of this new LLVM support. I would like to also extend this to Windows GNU targets to drop the runtime dependencies we have on MinGW, but I'd like to land this first.
* Some tests were fixed up for i686 MSVC here and there where necessary. The full test suite should be passing now for that target.
In terms of landing this I plan to have this go through first, then verify that i686 MSVC works, then I'll enable `make check` on the bots for that target instead of just `make` as-is today.
Closes#25869
This target covers MIPS devices that run the trunk version of OpenWRT.
The x86_64-unknown-linux-musl target always links statically to C libraries. For
the mips(el)-unknown-linux-musl target, we opt for dynamic linking (like most of
other targets do) to keep binary size down.
As for the C compiler flags used in the build system, we use the same flags used
for the mips(el)-unknown-linux-gnu target.
I don't believe these test cases have served any purpose in years.
The shootout benchmarks are now upstreamed. A new benchmark suite
should rather be maintained out of tree.
The cross prefix was not likely the actual compiler that needed to be used, but
rather the standard `arm-linux-gnueabihf-gcc` compiler can just be used with
`-march=armv7`.
Unfortunately older clang compilers don't support this argument, so the
bootstrap will fail. We don't actually really need to optimized the C code we
compile, however, as currently we're just compiling jemalloc and not much else.
This adds support for the armv7 crosstool-ng toolchain for the Raspberry Pi 2.
Getting the toolchain ready:
Checkout crosstool-ng from https://github.com/crosstool-ng/crosstool-ng
Build crosstool-ng
Configure the rpi2 target with |ct-ng armv7-rpi2-linux-gnueabihf|
Build the toolchain with |ct-build| and add the path to $toolchain_install_dir/bin to your $PATH
Then, on the rust side:
configure --target=armv7-rpi2-linux-gnueabihf && make && make install
To cross compile for the rpi2,
add $rust_install_path/lib to your $LD_LIBRARY_PATH, then use
rustc --target=armv7-rpi2-linux-gnueabihf -C linker=armv7-rpi2-linux-gnueabihf-g++ hello.rs
The purpose of the translation item collector is to find all monomorphic instances of functions, methods and statics that need to be translated into LLVM IR in order to compile the current crate.
So far these instances have been discovered lazily during the trans path. For incremental compilation we want to know the set of these instances in advance, and that is what the trans::collect module provides.
In the future, incremental and regular translation will be driven by the collector implemented here.
r? @nikomatsakis
cc @rust-lang/compiler
Translation Item Collection
===========================
This module is responsible for discovering all items that will contribute to
to code generation of the crate. The important part here is that it not only
needs to find syntax-level items (functions, structs, etc) but also all
their monomorphized instantiations. Every non-generic, non-const function
maps to one LLVM artifact. Every generic function can produce
from zero to N artifacts, depending on the sets of type arguments it
is instantiated with.
This also applies to generic items from other crates: A generic definition
in crate X might produce monomorphizations that are compiled into crate Y.
We also have to collect these here.
The following kinds of "translation items" are handled here:
- Functions
- Methods
- Closures
- Statics
- Drop glue
The following things also result in LLVM artifacts, but are not collected
here, since we instantiate them locally on demand when needed in a given
codegen unit:
- Constants
- Vtables
- Object Shims
General Algorithm
-----------------
Let's define some terms first:
- A "translation item" is something that results in a function or global in
the LLVM IR of a codegen unit. Translation items do not stand on their
own, they can reference other translation items. For example, if function
`foo()` calls function `bar()` then the translation item for `foo()`
references the translation item for function `bar()`. In general, the
definition for translation item A referencing a translation item B is that
the LLVM artifact produced for A references the LLVM artifact produced
for B.
- Translation items and the references between them for a directed graph,
where the translation items are the nodes and references form the edges.
Let's call this graph the "translation item graph".
- The translation item graph for a program contains all translation items
that are needed in order to produce the complete LLVM IR of the program.
The purpose of the algorithm implemented in this module is to build the
translation item graph for the current crate. It runs in two phases:
1. Discover the roots of the graph by traversing the HIR of the crate.
2. Starting from the roots, find neighboring nodes by inspecting the MIR
representation of the item corresponding to a given node, until no more
new nodes are found.
The roots of the translation item graph correspond to the non-generic
syntactic items in the source code. We find them by walking the HIR of the
crate, and whenever we hit upon a function, method, or static item, we
create a translation item consisting of the items DefId and, since we only
consider non-generic items, an empty type-substitution set.
Given a translation item node, we can discover neighbors by inspecting its
MIR. We walk the MIR and any time we hit upon something that signifies a
reference to another translation item, we have found a neighbor. Since the
translation item we are currently at is always monomorphic, we also know the
concrete type arguments of its neighbors, and so all neighbors again will be
monomorphic. The specific forms a reference to a neighboring node can take
in MIR are quite diverse. Here is an overview:
The most obvious form of one translation item referencing another is a
function or method call (represented by a CALL terminator in MIR). But
calls are not the only thing that might introduce a reference between two
function translation items, and as we will see below, they are just a
specialized of the form described next, and consequently will don't get any
special treatment in the algorithm.
A function does not need to actually be called in order to be a neighbor of
another function. It suffices to just take a reference in order to introduce
an edge. Consider the following example:
```rust
fn print_val<T: Display>(x: T) {
println!("{}", x);
}
fn call_fn(f: &Fn(i32), x: i32) {
f(x);
}
fn main() {
let print_i32 = print_val::<i32>;
call_fn(&print_i32, 0);
}
```
The MIR of none of these functions will contain an explicit call to
`print_val::<i32>`. Nonetheless, in order to translate this program, we need
an instance of this function. Thus, whenever we encounter a function or
method in operand position, we treat it as a neighbor of the current
translation item. Calls are just a special case of that.
In a way, closures are a simple case. Since every closure object needs to be
constructed somewhere, we can reliably discover them by observing
`RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
true for closures inlined from other crates.
Drop glue translation items are introduced by MIR drop-statements. The
generated translation item will again have drop-glue item neighbors if the
type to be dropped contains nested values that also need to be dropped. It
might also have a function item neighbor for the explicit `Drop::drop`
implementation of its type.
A subtle way of introducing neighbor edges is by casting to a trait object.
Since the resulting fat-pointer contains a reference to a vtable, we need to
instantiate all object-save methods of the trait, as we need to store
pointers to these functions even if they never get called anywhere. This can
be seen as a special case of taking a function reference.
Since `Box` expression have special compiler support, no explicit calls to
`exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
compiler will generate them. We have to observe `Rvalue::Box` expressions
and Box-typed drop-statements for that purpose.
Interaction with Cross-Crate Inlining
-------------------------------------
The binary of a crate will not only contain machine code for the items
defined in the source code of that crate. It will also contain monomorphic
instantiations of any extern generic functions and of functions marked with
The collection algorithm handles this more or less transparently. When
constructing a neighbor node for an item, the algorithm will always call
`inline::get_local_instance()` before proceeding. If no local instance can
be acquired (e.g. for a function that is just linked to) no node is created;
which is exactly what we want, since no machine code should be generated in
the current crate for such an item. On the other hand, if we can
successfully inline the function, we subsequently can just treat it like a
local item, walking it's MIR et cetera.
Eager and Lazy Collection Mode
------------------------------
Translation item collection can be performed in one of two modes:
- Lazy mode means that items will only be instantiated when actually
referenced. The goal is to produce the least amount of machine code
possible.
- Eager mode is meant to be used in conjunction with incremental compilation
where a stable set of translation items is more important than a minimal
one. Thus, eager mode will instantiate drop-glue for every drop-able type
in the crate, even of no drop call for that type exists (yet). It will
also instantiate default implementations of trait methods, something that
otherwise is only done on demand.
Open Issues
-----------
Some things are not yet fully implemented in the current version of this
module.
Since no MIR is constructed yet for initializer expressions of constants and
statics we cannot inspect these properly.
Ideally, no translation item should be generated for const fns unless there
is a call to them that cannot be evaluated at compile time. At the moment
this is not implemented however: a translation item will be produced
regardless of whether it is actually needed or not.
<!-- Reviewable:start -->
[<img src="https://reviewable.io/review_button.png" height=40 alt="Review on Reviewable"/>](https://reviewable.io/reviews/rust-lang/rust/30900)
<!-- Reviewable:end -->
Unfortunately older clang compilers don't support this argument, so the
bootstrap will fail. We don't actually really need to optimized the C code we
compile, however, as currently we're just compiling jemalloc and not much else.
The purpose of the translation item collector is to find all monomorphic instances of functions, methods and statics that need to be translated into LLVM IR in order to compile the current crate.
So far these instances have been discovered lazily during the trans path. For incremental compilation we want to know the set of these instances in advance, and that is what the trans::collect module provides.
In the future, incremental and regular translation will be driven by the collector implemented here.
This commit removes the `-D warnings` flag being passed through the makefiles to
all crates to instead be a crate attribute. We want these attributes always
applied for all our standard builds, and this is more amenable to Cargo-based
builds as well.
Note that all `deny(warnings)` attributes are gated with a `cfg(stage0)`
attribute currently to match the same semantics we have today
this makes sure the checks run before typeck (which might use the constant or const
function to calculate an array length) and gives prettier error messages in case of for
loops and such (since they aren't expanded yet).
fixes#30887
r? @pnkfelix
This aligns with unicode recommendations and should be stable for all future
unicode releases. See http://unicode.org/reports/tr31/#R3.
This renames `libsyntax::lexer::is_whitespace` to `is_pattern_whitespace`
so potentially breaks users of libsyntax.
this makes sure the checks run before typeck (which might use the constant or const
function to calculate an array length) and gives prettier error messages in case of for
loops and such (since they aren't expanded yet).
Use arena allocation instead of reference counting for `Module`s to fix memory leaks from `Rc` cycles.
A module references its module children and its import resolutions, and an import resolution references the module defining the imported name, so there is a cycle whenever a module imports something from an ancestor module.
For example,
```rust
mod foo { // `foo` references `bar`.
fn baz() {}
mod bar { // `bar` references the import.
use foo::baz; // The import references `foo`.
}
}
```
I also re-enabled the use of `#[thread_local]` on AArch64. It was originally disabled in the PR that introduced AArch64 (#19790), but the reasons for this were not explained. `#[thread_local]` seems to work fine in my tests on AArch64, so I don't think this should be an issue.
cc @alexcrichton @akiss77
This mixes in additional information into the hash that is
passed to -C extra-filename. It can be used to further distinguish
the standard libraries if they must be installed next to each
other.
Closes#29559
Frankly, I'm not sure if this solves a real problem. It's meant to help with side-by-side and overlapping installations where there are two sets of libs in /usr, but there are other potential issues there as well, including that some of our artifacts don't use this extra-filename munging, and it's not something our installers can support at all.
cc @jauhien Do you still think this helps the Gentoo case?
Since `darwin` is really `apple-darwin`, the valgrind-rpass tests were not actually being run with valgrind on mac before. Also, the `HOST` check was completely wrong.
r? @alexcrichton
This mixes in additional information into the hash that is
passed to -C extra-filename. It can be used to further distinguish
the standard libraries if they must be installed next to each
other.
Closes#29559