closes#17670
[breaking-change]
Traits must be object-safe if they are to be used in trait objects. This might require splitting a trait into object-safe and non-object-safe parts.
Some standard library traits in std::io have been split - Reader has new traits BytesReader (for the bytes method) and AsRefReader (for by_ref), Writer has new trait AsRefWriter (for by_ref). All these new traits have blanket impls, so any type which implements Reader or Writer (respectively) will have an implmentation of the new traits. To fix your code, you just need to `use` the new trait.
This commit adds the following impls:
impl<T> Deref<[T]> for Vec<T>
impl<T> DerefMut<[T]> for Vec<T>
impl Deref<str> for String
This commit also removes all duplicated inherent methods from vectors and
strings as implementations will now silently call through to the slice
implementation. Some breakage occurred at std and beneath due to inherent
methods removed in favor of those in the slice traits and std doesn't use its
own prelude,
cc #18424
Diagnostics such as the following
```
mismatched types: expected `core::result::Result<uint,()>`, found `core::option::Option<<generic #1>>`
<anon>:6 let a: Result<uint, ()> = None;
^~~~
mismatched types: expected `&mut <generic #2>`, found `uint`
<anon>:7 f(42u);
^~~
```
tend to be fairly unappealing to new users. While specific type var IDs are valuable in
diagnostics that deal with more than one such variable, in practice many messages
only mention one. In those cases, leaving out the specific number makes the messages
slightly less terrifying.
In addition, type variables have been changed to use the type hole syntax `_` in diagnostics.
With a variable ID, they're printed as `_#id` (e.g. `_#1`). In cases where the ID is left out,
it's simply `_`. Integer and float variables have an additional suffix after the number, e.g.
`_#1i` or `_#3f`.
This common representation for delimeters should make pattern matching easier. Having a separate `token::DelimToken` enum also allows us to enforce the invariant that the opening and closing delimiters must be the same in `ast::TtDelimited`, removing the need to ensure matched delimiters when working with token trees.
Simpler, safer and shorter, in the same spirit of the current version, and the
same performances.
@mahkoh please review, I think I didn't change any performances related thing.
This in-progress PR implements https://github.com/rust-lang/rust/issues/17489.
I made the code changes in this commit, next is to go through alllllllll the documentation and fix various things.
- Rename column headings as appropriate, `# Panics` for panic conditions and `# Errors` for `Result`s.
- clean up usage of words like 'fail' in error messages
Anything else to add to the list, @aturon ? I think I should leave the actual functions with names like `slice_or_fail` alone, since you'll get to those in your conventions work?
I'm submitting just the code bits now so that we can see it separately, and I also don't want to have to keep re-building rust over and over again if I don't have to 😉
Listing all the bits so I can remember as I go:
- [x] compiler-rt
- [x] compiletest
- [x] doc
- [x] driver
- [x] etc
- [x] grammar
- [x] jemalloc
- [x] liballoc
- [x] libarena
- [x] libbacktrace
- [x] libcollections
- [x] libcore
- [x] libcoretest
- [x] libdebug
- [x] libflate
- [x] libfmt_macros
- [x] libfourcc
- [x] libgetopts
- [x] libglob
- [x] libgraphviz
- [x] libgreen
- [x] libhexfloat
- [x] liblibc
- [x] liblog
- [x] libnative
- [x] libnum
- [x] librand
- [x] librbml
- [x] libregex
- [x] libregex_macros
- [x] librlibc
- [x] librustc
- [x] librustc_back
- [x] librustc_llvm
- [x] librustdoc
- [x] librustrt
- [x] libsemver
- [x] libserialize
- [x] libstd
- [x] libsync
- [x] libsyntax
- [x] libterm
- [x] libtest
- [x] libtime
- [x] libunicode
- [x] liburl
- [x] libuuid
- [x] llvm
- [x] rt
- [x] test
This includes updating the language items and marking what needs to
change after a snapshot.
If you do not use the standard library, the language items you need to
implement have changed. For example:
```rust
#[lang = "fail_fmt"] fn fail_fmt() -> ! { loop {} }
```
is now
```rust
#[lang = "panic_fmt"] fn panic_fmt() -> ! { loop {} }
```
Related, lesser-implemented language items `fail` and
`fail_bounds_check` have become `panic` and `panic_bounds_check`, as
well. These are implemented by `libcore`, so it is unlikely (though
possible!) that these two renamings will affect you.
[breaking-change]
Fix test suite
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
Some minor wording fixes to the Closures chapter; my brain tripped a few times when reading it, so I tried to come up with something a bit smoother. I’m not a native speaker, so please do review this critically.
This PR changes the signature of several methods from `foo(self, ...)` to `foo(&self, ...)`/`foo(&mut self, ...)`, but there is no breakage of the usage of these methods due to the autoref nature of `method.call()`s. This PR also removes the lifetime parameter from some traits (`Trait<'a>` -> `Trait`). These changes break any use of the extension traits for generic programming, but those traits are not meant to be used for generic programming in the first place. In the whole rust distribution there was only one misuse of a extension trait as a bound, which got corrected (the bound was unnecessary and got removed) as part of this PR.
I've kept the commits as small and self-contained as possible for reviewing sake, but I can squash them when the review is over.
See this [table] to get an idea of what's left to be done. I've already DSTified [`Show`][show] and I'm working on `Hash`, but bootstrapping those changes seem to require a more recent snapshot (#18259 does the trick)
r? @aturon
cc #16918
[show]: https://github.com/japaric/rust/commits/show
[table]: https://docs.google.com/spreadsheets/d/1MZ_iSNuzsoqeS-mtLXnj9m0hBYaH5jI8k9G_Ud8FT5g/edit?usp=sharing
Technically speaking, negative duration is not valid ISO 8601, but we need to
print it anyway. If `d` is a positive duration with the output `xxxxxxx`, then
the expected output of negative `-d` value is `-xxxxxxx`. I.e. the idea is to
print negative durations as positive with a leading minus sign.
Closes#18181.