In addition to the regression test of `RangeInclusive` for #70155, now all range types are checked for usability within const generics:
- `RangeFrom`
- `RangeFull`
- `RangeToInclusive`
- `RangeTo`
- `Range`
The test are moved from `test\ui\const-generics\issues\issue-70155` to `test\ui\const-generics\std\range` in anticipation of future similar tests for std types.
Revised span-to-lines conversion to produce an empty vec on DUMMY_SP.
This required revising some of the client code to stop relying on the returned set of lines being non-empty.
Fix#68808
Add Wake trait for safe construction of Wakers.
Currently, constructing a waker requires calling the unsafe `Waker::from_raw` API. This API requires the user to manually construct a vtable for the waker themself - which is both cumbersome and very error prone. This API would provide an ergonomic, straightforward and guaranteed memory-safe way of constructing a waker.
It has been our longstanding intention that the `Waker` type essentially function as an `Arc<dyn Wake>`, with a `Wake` trait as defined here. Two considerations prevented the original API from being shipped as simply an `Arc<dyn Wake>`:
- We want to support futures on embedded systems, which may not have an allocator, and in optimized executors for which this API may not be best-suited. Therefore, we have always explicitly supported the maximally-flexible (but also memory-unsafe) `RawWaker` API, and `Waker` has always lived in libcore.
- Because `Waker` lives in libcore and `Arc` lives in liballoc, it has not been feasible to provide a constructor for `Waker` from `Arc<dyn Wake>`.
Therefore, the Wake trait was left out of the initial version of the task waker API.
However, as Rust 1.41, it is possible under the more flexible orphan rules to implement `From<Arc<W>> for Waker where W: Wake` in liballoc. Therefore, we can now define this constructor even though `Waker` lives in libcore.
This PR adds these APIs:
- A `Wake` trait, which contains two methods
- A required method `wake`, which is called by `Waker::wake`
- A provided method `wake_by_ref`, which is called by `Waker::wake_by_ref` and which implementors can override if they can optimize this use case.
- An implementation of `From<Arc<W>> for Waker where W: Wake + Send + Sync + 'static`
- A similar implementation of `From<Arc<W>> for RawWaker`.
Changes:
````
rustup https://github.com/rust-lang/rust/pull/69968/
Fix documentation generation for configurable lints
Fix single binding in closure
Improvement: Don't show function body in needless_lifetimes
````
Currently, constructing a waker requires calling the unsafe
`Waker::from_raw` API. This API requires the user to manually construct
a vtable for the waker themself - which is both cumbersome and very
error prone. This API would provide an ergonomic, straightforward and
guaranteed memory-safe way of constructing a waker.
It has been our longstanding intention that the `Waker` type essentially
function as an `Arc<dyn Wake>`, with a `Wake` trait as defined here. Two
considerations prevented the original API from being shipped as simply
an `Arc<dyn Wake>`:
- We want to support futures on embedded systems, which may not have an
allocator, and in optimized executors for which this API may not be
best-suited. Therefore, we have always explicitly supported the
maximally-flexible (but also memory-unsafe) `RawWaker` API, and
`Waker` has always lived in libcore.
- Because `Waker` lives in libcore and `Arc` lives in liballoc, it has
not been feasible to provide a constructor for `Waker` from `Arc<dyn
Wake>`.
Therefore, the Wake trait was left out of the initial version of the
task waker API.
However, as Rust 1.41, it is possible under the more flexible orphan
rules to implement `From<Arc<W>> for Waker where W: Wake` in liballoc.
Therefore, we can now define this constructor even though `Waker` lives
in libcore.
This PR adds these APIs:
- A `Wake` trait, which contains two methods
- A required method `wake`, which is called by `Waker::wake`
- A provided method `wake_by_ref`, which is called by
`Waker::wake_by_ref` and which implementors can override if they
can optimize this use case.
- An implementation of `From<Arc<W>> for Waker where W: Wake + Send +
Sync + 'static`
- A similar implementation of `From<Arc<W>> for RawWaker`.
Tweak output for invalid negative impl errors
Follow up to #69722. Tweak negative impl errors emitted in the HIR:
```
error[E0192]: invalid negative impl
--> $DIR/E0192.rs:9:6
|
LL | impl !Trait for Foo { }
| ^^^^^^
|
= note: negative impls are only allowed for auto traits, like `Send` and `Sync`
```
Rollup of 8 pull requests
Successful merges:
- #69080 (rustc_codegen_llvm: don't generate any type debuginfo for -Cdebuginfo=1.)
- #69940 (librustc_codegen_llvm: Replace deprecated API usage)
- #69942 (Increase verbosity when suggesting subtle code changes)
- #69968 (rustc: keep upvars tupled in {Closure,Generator}Substs.)
- #70123 (Ensure LLVM is in the link path for rustc tools)
- #70159 (Update the bundled wasi-libc with libstd)
- #70233 (resolve: Do not resolve visibilities on proc macro definitions twice)
- #70286 (Miri error type: remove UbExperimental variant)
Failed merges:
r? @ghost
Miri error type: remove UbExperimental variant
In https://github.com/rust-lang/miri/pull/1250, I will move Miri away from that variant, and use a custom `MachineStop` exception instead.
Ensure LLVM is in the link path for rustc tools
The build script for `rustc_llvm` outputs LLVM information in `cargo:rustc-link-lib` and `cargo:rustc-link-search` so the compiler can be linked correctly. However, while the lib is carried along in metadata, the search paths are not. So when cargo is invoked again later for rustc _tools_, they'll also try to link with LLVM, but the necessary paths may be left out.
Rustbuild can use the environment to set the LLVM link path for tools -- `LIB` for MSVC toolchains and `LIBRARY_PATH` for everyone else.
Fixes#68714.
rustc: keep upvars tupled in {Closure,Generator}Substs.
Previously, each closure/generator capture's (aka "upvar") type was tracked as one "synthetic" type parameter in the closure/generator substs, and figuring out where the parent `fn`'s generics end and the synthetics start involved slicing at `tcx.generics_of(def_id).parent_count`.
Needing to query `generics_of` limited @davidtwco (who wants to compute some `TypeFlags` differently for parent generics vs upvars, and `TyCtxt` is not available there), which is how I got started on this, but it's also possible that the `generics_of` queries are slowing down `{Closure,Generator}Substs` methods.
To give an example, for a `foo::<T, U>::{closure#0}` with captures `x: X` and `y: Y`, substs are:
* before this PR: `[T, U, /*kind*/, /*signature*/, X, Y]`
* after this PR: `[T, U, /*kind*/, /*signature*/, (X, Y)]`
You can see that, with this PR, no matter how many captures, the last 3 entries in the substs (or 5 for a generator) are always the "synthetic" ones, with the last one being the tuple of capture types.
r? @nikomatsakis cc @Zoxc
Increase verbosity when suggesting subtle code changes
Do not suggest changes that are actually quite small inline, to minimize the likelihood of confusion.
Fix#69243.