When an associated type with GATs isn't specified in a `dyn Trait`, emit
an object safety error instead of only complaining about the missing
associated type, as it will lead the user down a path of three different
errors before letting them know that what they were trying to do is
impossible to begin with.
Fix#103155.
bootstrap: bump fd-lock, clap and windows
This update is proposed as an effort to update target-sensitive dependencies like `libc` and `rustix`.
Since the Cargo.toml file is modified to prevent downgrading, cargo will update the dependencies automatically when you build the binary.
Fail typeck for illegal break-with-value
This is fixes the issue wherein typeck was succeeding for break-with-value exprs at illegal locations such as inside `while`, `while let` and `for` loops which eventually caused an ICE during MIR interpretation for const eval.
Now we fail typeck for such code which prevents faulty MIR from being generated and interpreted, thus fixing the ICE.
Fixes#114529
Ignore RPIT duplicated lifetimes in `opaque_types_defined_by`
An RPIT's or TAIT's own generics are kinda useless -- so just ignore them. For TAITs, they will always be empty, and for RPITs, they're always duplicated lifetimes.
Fixes#115013.
Stabilize inline asm usage with rustc_codegen_cranelift
Previously using inline asm with the cg_clif version built as part of rustc would return an error that inline asm support is unstable. Recently I implemented everything that remained for full support of inline asm with the exception of sym operands (which remain marked as unstable for cg_clif). As such I think it is time to declare the inline asm support of cg_clif stable.
`@rustbot` label +A-codegen +A-cranelift +T-compiler
coverage: Replace manual debug indents with nested tracing spans in `counters`
Instead of indenting these debug messages manually, we can get `#[instrument]` to do a better job of it for us, giving us some nice little simplifications.
Allows `#[diagnostic::on_unimplemented]` attributes to have multiple
notes
This commit extends the `#[diagnostic::on_unimplemented]` (and `#[rustc_on_unimplemented]`) attributes to allow multiple `note` options. This enables emitting multiple notes for custom error messages. For now I've opted to not change any of the existing usages of `#[rustc_on_unimplemented]` and just updated the relevant compile tests.
r? `@compiler-errors`
I'm happy to adjust any of the existing changed location to emit the old error message if that's desired.
Print variadic argument pattern in HIR pretty printer
Variadic argument name/pattern was ignored during HIR pretty printing.
Could not figure out why it only works on normal functions (`va2`) and not in foreign ones (`va1`).
This is fixes the issue wherein typeck was succeeding for break-with-value
at illegal locations such as inside `while`, `while let` and `for` loops which
eventually caused an ICE during MIR interpetation for const eval.
Now we fail typeck for such code which prevents faulty MIR from being generated
and interpreted, thus fixing the ICE.
Stabilize Ratified RISC-V Target Features
Stabilization PR for the ratified RISC-V target features. This stabilizes some of the target features tracked by #44839. This is also a part of #114544 and eventually needed for the RISC-V part of rust-lang/rfcs#3268.
There is a similar PR for the the stdarch crate which can be found at rust-lang/stdarch#1476.
This was briefly discussed on Zulip
(https://rust-lang.zulipchat.com/#narrow/stream/250483-t-compiler.2Frisc-v/topic/Stabilization.20of.20RISC-V.20Target.20Features/near/394793704).
Specifically, this PR stabilizes the:
* Atomic Instructions (A) on v2.0
* Compressed Instructions (C) on v2.0
* ~Double-Precision Floating-Point (D) on v2.2~
* ~Embedded Base (E) (Given as `RV32E` / `RV64E`) on v2.0~
* ~Single-Precision Floating-Point (F) on v2.2~
* Integer Multiplication and Division (M) on v2.0
* ~Vector Operations (V) on v1.0~
* Bit Manipulations (B) on v1.0 listed as `zba`, `zbc`, `zbs`
* Scalar Cryptography (Zk) v1.0.1 listed as `zk`, `zkn`, `zknd`, `zkne`, `zknh`, `zkr`, `zks`, `zksed`, `zksh`, `zkt`, `zbkb`, `zbkc` `zkbx`
* ~Double-Precision Floating-Point in Integer Register (Zdinx) on v1.0~
* ~Half-Precision Floating-Point (Zfh) on v1.0~
* ~Minimal Half-Precision Floating-Point (Zfhmin) on v1.0~
* ~Single-Precision Floating-Point in Integer Register (Zfinx) on v1.0~
* ~Half-Precision Floating-Point in Integer Register (Zhinx) on v1.0~
* ~Minimal Half-Precision Floating-Point in Integer Register (Zhinxmin) on v1.0~
r? `@Amanieu`
pass `CODEGEN_BACKENDS` to docker
The backends to build are now defined in the `CODEGEN_BACKENDS` env var. It's correctly set in CI, but wasn't passed to docker, hence cg_clif wasn't actually built in #81746.
r? `@Kobzol:` I locally tried `CODEGEN_BACKENDS="cranelift" DEPLOY=1 src/ci/docker/run.sh dist-x86_64-linux` and this change was enough for `ci/run.sh` to read the env var.
So I'll try as-is and we'll see.
Increase the reach of panic_immediate_abort
I wanted to use/abuse this recently as part of another project, and I was surprised how many panic-related things were left in my binaries if I built a large crate with the feature enabled along with LTO. These changes get all the panic-related symbols that I could find out of my set of locally installed Rust utilities.
Consider alias bounds when computing liveness in NLL (but this time sound hopefully)
This is a revival of #116040, except removing the changes to opaque lifetime captures check to make sure that we're not triggering any unsoundness due to the lack of general existential regions and the currently-existing `ReErased` hack we use instead.
r? `@aliemjay` -- I appreciate you pointing out the unsoundenss in the previous iteration of this PR, and I'd like to hear that you're happy with this iteration of this PR before this goes back into FCP :>
Fixes#116794 as well
---
(mostly copied from #116040 and reworked slightly)
# Background
Right now, liveness analysis in NLL is a bit simplistic. It simply walks through all of the regions of a type and marks them as being live at points. This is problematic in the case of aliases, since it requires that we mark **all** of the regions in their args[^1] as live, leading to bugs like #42940.
In reality, we may be able to deduce that fewer regions are allowed to be present in the projected type (or "hidden type" for opaques) via item bounds or where clauses, and therefore ideally, we should be able to soundly require fewer regions to be live in the alias.
For example:
```rust
trait Captures<'a> {}
impl<T> Captures<'_> for T {}
fn capture<'o>(_: &'o mut ()) -> impl Sized + Captures<'o> + 'static {}
fn test_two_mut(mut x: ()) {
let _f1 = capture(&mut x);
let _f2 = capture(&mut x);
//~^ ERROR cannot borrow `x` as mutable more than once at a time
}
```
In the example above, we should be able to deduce from the `'static` bound on `capture`'s opaque that even though `'o` is a captured region, it *can never* show up in the opaque's hidden type, and can soundly be ignored for liveness purposes.
# The Fix
We apply a simple version of RFC 1214's `OutlivesProjectionEnv` and `OutlivesProjectionTraitDef` rules to NLL's `make_all_regions_live` computation.
Specifically, when we encounter an alias type, we:
1. Look for a unique outlives bound in the param-env or item bounds for that alias. If there is more than one unique region, bail, unless any of the outlives bound's regions is `'static`, and in that case, prefer `'static`. If we find such a unique region, we can mark that outlives region as live and skip walking through the args of the opaque.
2. Otherwise, walk through the alias's args recursively, as we do today.
## Limitation: Multiple choices
This approach has some limitations. Firstly, since liveness doesn't use the same type-test logic as outlives bounds do, we can't really try several options when we're faced with a choice.
If we encounter two unique outlives regions in the param-env or bounds, we simply fall back to walking the opaque via its args. I expect this to be mostly mitigated by the special treatment of `'static`, and can be fixed in a forwards-compatible by a more sophisticated analysis in the future.
## Limitation: Opaque hidden types
Secondly, we do not employ any of these rules when considering whether the regions captured by a hidden type are valid. That causes this code (cc #42940) to fail:
```rust
trait Captures<'a> {}
impl<T> Captures<'_> for T {}
fn a() -> impl Sized + 'static {
b(&vec![])
}
fn b<'o>(_: &'o Vec<i32>) -> impl Sized + Captures<'o> + 'static {}
```
We need to have existential regions to avoid [unsoundness](https://github.com/rust-lang/rust/pull/116040#issuecomment-1751628189) when an opaque captures a region which is not represented in its own substs but which outlives a region that does.
## Read more
Context: https://github.com/rust-lang/rust/pull/115822#issuecomment-1731153952 (for the liveness case)
More context: https://github.com/rust-lang/rust/issues/42940#issuecomment-455198309 (for the opaque capture case, which this does not fix)
[^1]: except for bivariant region args in opaques, which will become less relevant when we move onto edition 2024 capture semantics for opaques.
See through aggregates in GVN
This PR is extracted from https://github.com/rust-lang/rust/pull/111344
The first 2 commit are cleanups to avoid repeated work. I propose to stop removing useless assignments as part of this pass, and let a later `SimplifyLocals` do it. This makes tests easier to read (among others).
The next 3 commits add a constant folding mechanism to the GVN pass, presented in https://github.com/rust-lang/rust/pull/116012. ~This pass is designed to only use global allocations, to avoid any risk of accidental modification of the stored state.~
The following commits implement opportunistic simplifications, in particular:
- projections of aggregates: `MyStruct { x: a }.x` gets replaced by `a`, works with enums too;
- projections of arrays: `[a, b][0]` becomes `a`;
- projections of repeat expressions: `[a; N][x]` becomes `a`;
- transform arrays of equal operands into a repeat rvalue.
Fixes https://github.com/rust-lang/miri/issues/3090
r? `@oli-obk`
Rollup of 5 pull requests
Successful merges:
- #115968 (Don't use LFS64 symbols on musl)
- #117043 (add bootstrap flag `--skip-stage0-validation`)
- #117082 (Fix closure-inherit-target-feature test for SGX platform)
- #117312 (memcpy assumptions: link to source showing that GCC makes the same assumption)
- #117337 (rustdoc: Use `ThinVec` in `GenericParamDefKind`)
r? `@ghost`
`@rustbot` modify labels: rollup
rustdoc: Use `ThinVec` in `GenericParamDefKind`
This should hopefully reduce memory usage and improve performance since
these vectors are often empty (and `GenericParamDefKind` is constructed *a lot*).
memcpy assumptions: link to source showing that GCC makes the same assumption
I finally stumbled upon a source showing that GCC also generates overlapping `memcpy`. So if we're linking major C compilers making such assumptions here, let's have both clang and GCC.
Fix closure-inherit-target-feature test for SGX platform
PR #116078 adds the `closure-inherit-target-feature.rs` test that checks the generated assembly code for closures. These checks explicitly check the presence of `ret` instructions. This is incompatible with the SGX target as it explicitly rewrites all `ret` instructions to mitigate LVI vulnerabilities of certain processors. This PR simply ignores these tests for the SGX platform.
cc: ```@jethrogb```
add bootstrap flag `--skip-stage0-validation`
This change introduces the `--skip-stage0-validation` flag, which permits the use of any desired version of the stage0 compiler without verifying its version.
Additionally, stage0 compiler validation check is reverted(#115103) to its default enabled state.
Helps to #115065
r? Mark-Simulacrum
Don't use LFS64 symbols on musl
Supersedes #106246
~~Note to packagers: If your distro's musl package has already been updated, then you won't be able to build a newer version of rust until a new rust release is made with these changes merged (which can be used to bootstrap). I'm using a super hacky method to bypass this by creating a stub library with LFS64 symbols and building a patched rust, so the symbols satisfy the build requirements while the final compiler build has no references to LFS64 symbols, example: https://codeberg.org/kiss-community/repo/pulls/160/files~~ Doesn't seem to be necessary with new rustup nightly builds, likely due to updates to vendored crates
cc ```@alyssais```
This should hopefully reduce memory usage and improve performance since
these vectors are often empty (and `GenericParamDefKind` is constructed
*a lot*).
Rollup of 5 pull requests
Successful merges:
- #115773 (tvOS simulator support on Apple Silicon for rustc)
- #117162 (Remove `cfg_match` from the prelude)
- #117311 (-Zunpretty help: add missing possible values)
- #117316 (Mark constructor of `BinaryHeap` as const fn)
- #117319 (explain why we don't inline when target features differ)
r? `@ghost`
`@rustbot` modify labels: rollup
change default output mode of `BootstrapCommand`
`SuppressOnSuccess` on `BootstrapCommand` is a problematic default mode as it affects the logs during the bootstrapping (as shown in the screenshot below). The default behavior should be to print everything unless we explicitly modify the behavior within build steps.
![image](https://github.com/rust-lang/rust/assets/39852038/8dbaaeb2-0656-4ff9-8e48-1ac0734a913f)
Fixes#117315
cc `@Kobzol`