Special treatment like this was necessary before `pub(restricted)` had been implemented and only two visibilities existed - `pub` and non-`pub`.
Now it's no longer necessary and the desired behavior follows from `pub(restricted)`-style visibilities naturally assigned to enum variants and trait items.
Refactor `PrimitiveTypeTable` for Clippy
I removed `PrimitiveTypeTable` and added `PrimTy::ALL` and `PrimTy::from_name` in its place. This allows Clippy to use `PrimTy::from_name` for the `builtin_type_shadow` lint, and a `const` list of primitive types is deleted from Clippy code (the goal). All changes should be a little faster, if anything.
Box the biggest ast::ItemKind variants
This PR is a different approach on https://github.com/rust-lang/rust/pull/81400, aiming to save memory in humongous ASTs.
The three affected item kind enums are:
- `ast::ItemKind` (208 -> 112 bytes)
- `ast::AssocItemKind` (176 -> 72 bytes)
- `ast::ForeignItemKind` (176 -> 72 bytes)
cc #79813
This PR adds an allow-by-default future-compatibility lint
`SEMICOLON_IN_EXPRESSIONS_FROM_MACROS`. It fires when a trailing semicolon in a
macro body is ignored due to the macro being used in expression
position:
```rust
macro_rules! foo {
() => {
true; // WARN
}
}
fn main() {
let val = match true {
true => false,
_ => foo!()
};
}
```
The lint takes its level from the macro call site, and
can be allowed for a particular macro by adding
`#[allow(semicolon_in_expressions_from_macros)]`.
The lint is set to warn for all internal rustc crates (when being built
by a stage1 compiler). After the next beta bump, we can enable
the lint for the bootstrap compiler as well.
When encountering a name `a` that isn't resolved, but a label `'a` is
found in the current ribs, only suggest `'a` if this name is the value
expression of a `break` statement.
Solve FIXME.
Initialize a few variables directly
Currently they are declared as `mut`, get initialized to a default value, and
then possibly overwritten.
By initializing to the final value directly, they don't need to be `mut` and
it's clear that they don't get mutated elsewhere later on.
resolve: Simplify collection of traits in scope
"Traits in scope" for a given location are collected by walking all scopes in type namespace, collecting traits in them and pruning traits that don't have an associated item with the given name and namespace.
Previously we tried to prune traits using some kind of hygienic resolution for associated items, but that was complex and likely incorrect, e.g. in #80762 correction to visibilites of trait items caused some traits to not be in scope anymore.
I previously had some comments and concerns about this in https://github.com/rust-lang/rust/pull/65351.
In this PR we are doing some much simpler pruning based on `Symbol` and `Namespace` comparisons, it should be enough to throw away 99.9% of unnecessary traits.
It is not necessary for pruning to be precise because for trait aliases, for example, we don't do any pruning at all, and precise hygienic resolution for associated items needs to be done in typeck anyway.
The somewhat unexpected effect is that trait imports introduced by macros 2.0 now bring traits into scope due to the removed hygienic check on associated item names.
I'm not sure whether it is desirable or not, but I think it's acceptable for now.
The old check was certainly incorrect because macros 2.0 did bring trait aliases into scope.
If doing this is not desirable, then we should come up with some other way to avoid bringing traits from macros 2.0 into scope, that would accommodate for trait aliases as well.
---
The PR also contains a couple of pure refactorings
- Scope walk is done by using `visit_scopes` instead of a hand-rolled version.
- Code is restructured to accomodate for rustdoc that also wants to query traits in scope, but doesn't want to filter them by associated items at all.
r? ```@matthewjasper```
resolve: Reject ambiguity built-in attr vs different built-in attr
Fixes https://github.com/rust-lang/rust/issues/79798.
Resolution ensures that inert attributes cannot be used through imports like this, but built-in attributes don't go through initial resolution (only through resolution validation), so we have to keep some extra data (the built-in attribute name) to prevent it from happening.
Currently they are declared as `mut`, get initialized to a default value, and
then possibly overwritten.
By initializing to the final value directly, they don't need to be `mut` and
it's clear that they don't get mutated elsewhere later on.
Update tests of "unused_lifetimes" lint for async functions and corresponding source code
Before this PR the following code would cause an error:
```
#![deny(unused_lifetimes)]
async fn f<'a>(_: &'a i32) {}
fn main() {}
```
It was happening because of the desugaring of return type in async functions. As a result of the desugaring, the return type contains all lifetimes involved in the function signature. And these lifetimes were interpreted separately from the same in the function scope => so they are unused.
Now, all lifetimes from the return type are interpreted as used. It is also not perfect, but at least this lint doesn't cause wrong errors now.
This PR connected to issues #78522, #77217
Rework diagnostics for wrong number of generic args (fixes#66228 and #71924)
This PR reworks the `wrong number of {} arguments` message, so that it provides more details and contextual hints.
Separate out a `hir::Impl` struct
This makes it possible to pass the `Impl` directly to functions, instead
of having to pass each of the many fields one at a time. It also
simplifies matches in many cases.
See `rustc_save_analysis::dump_visitor::process_impl` or `rustdoc::clean::clean_impl` for a good example of how this makes `impl`s easier to work with.
r? `@petrochenkov` maybe?
This makes it possible to pass the `Impl` directly to functions, instead
of having to pass each of the many fields one at a time. It also
simplifies matches in many cases.
resolve: Simplify built-in macro table
We don't use full `SyntaxExtension`s from the table, only `SyntaxExtensionKind`s, and `Ident` in `register_builtin_macro` always had dummy span. This PR removes unnecessary data from the table and related function signatures.
Noticed when reviewing #80850.
resolve: Scope visiting doesn't need an `Ident`
Resolution scope visitor (`fn visit_scopes`) currently takes an `Ident` parameter, but it doesn't need a full identifier, or even its span, it only needs the `SyntaxContext` part.
The `SyntaxContext` part is necessary because scope visitor has to jump to macro definition sites, so it has to be directed by macro expansion information somehow.
I think it's clearer to pass only the necessary part.
Yes, usually visiting happens as a part of an identifier resolution, but in cases like collecting traits in scope (#80765) or collecting typo suggestions that's not the case.
r? `@matthewjasper`
Allow #[rustc_builtin_macro = "name"]
This adds the option of specifying the name of a builtin macro in the `#[rustc_builtin_macro]` attribute: `#[rustc_builtin_macro = "name"]`.
This makes it possible to have both `std::panic!` and `core::panic!` as a builtin macro, by using different builtin macro names for each. This is needed to implement the edition-specific behaviour of the panic macros of RFC 3007.
Also removes `SyntaxExtension::is_derive_copy`, as the macro name (e.g. `sym::Copy`) is now tracked and provides that information directly.
r? ``@petrochenkov``
Use correct span for structured suggestion
On structured suggestion for `let` -> `const` and `const` -> `let`, use
a proper `Span` and update tests to check the correct application.
Follow up to #80012.
This makes it possible to have both std::panic and core::panic as a
builtin macro, by using different builtin macro names for each.
Also removes SyntaxExtension::is_derive_copy, as the macro name (e.g.
sym::Copy) is now tracked and provides that information directly.
On structured suggestion for `let` -> `const` and `const` -> `let`, use
a proper `Span` and update tests to check the correct application.
Follow up to #80012.