Deal with unnormalized projections when structurally resolving types with new solver
1. Normalize types in `structurally_resolved_type` when the new solver is enabled
2. Normalize built-in autoderef targets in `Autoderef` when the new solver is enabled
3. Normalize-erasing-regions in `resolve_type` in writeback
This is motivated by the UI test provided, which currently fails with:
```
error[E0609]: no field `x` on type `<usize as SliceIndex<[Foo]>>::Output`
--> <source>:9:11
|
9 | xs[0].x = 1;
| ^
```
I'm pretty happy with the approach in (1.) and (2.) and think we'll inevitably need something like this in the long-term, but (3.) seems like a hack to me. It's a *lot* of work to add tons of new calls to every user of these typeck results though (mir build, late lints, etc). Happy to discuss further.
r? `@lcnr`
Uplift `clippy::{drop,forget}_{ref,copy}` lints
This PR aims at uplifting the `clippy::drop_ref`, `clippy::drop_copy`, `clippy::forget_ref` and `clippy::forget_copy` lints.
Those lints are/were declared in the correctness category of clippy because they lint on useless and most probably is not what the developer wanted.
## `drop_ref` and `forget_ref`
The `drop_ref` and `forget_ref` lint checks for calls to `std::mem::drop` or `std::mem::forget` with a reference instead of an owned value.
### Example
```rust
let mut lock_guard = mutex.lock();
std::mem::drop(&lock_guard) // Should have been drop(lock_guard), mutex
// still locked
operation_that_requires_mutex_to_be_unlocked();
```
### Explanation
Calling `drop` or `forget` on a reference will only drop the reference itself, which is a no-op. It will not call the `drop` or `forget` method on the underlying referenced value, which is likely what was intended.
## `drop_copy` and `forget_copy`
The `drop_copy` and `forget_copy` lint checks for calls to `std::mem::forget` or `std::mem::drop` with a value that derives the Copy trait.
### Example
```rust
let x: i32 = 42; // i32 implements Copy
std::mem::forget(x) // A copy of x is passed to the function, leaving the
// original unaffected
```
### Explanation
Calling `std::mem::forget` [does nothing for types that implement Copy](https://doc.rust-lang.org/std/mem/fn.drop.html) since the value will be copied and moved into the function on invocation.
-----
Followed the instructions for uplift a clippy describe here: https://github.com/rust-lang/rust/pull/99696#pullrequestreview-1134072751
cc `@m-ou-se` (as T-libs-api leader because the uplifting was discussed in a recent meeting)
Use `?0` notation for ty/ct/int/float/region vars
Aligns the notation for infer vars that T-types and friends most often uses for inference variables with the notation in the compiler (which is kinda a sigil nightmare IMO: `_#`) by adopting `?0` style infer vars.
This mostly affects debug output since verbose infer vars shouldn't show up in user-facing places.
Does this need an MCP? It's debug output, so I'm thinking no, but happy to open one. 🤔
r? types
don't uniquify regions when canonicalizing
uniquifying causes a bunch of issues, most notably it causes `AliasEq(<?x as Trait<'a>>::Assoc, <?x as Trait<'a>>::Assoc)` to result in ambiguity because both `normalizes-to` paths result in ambiguity and substs equate should trivially succeed but doesn't because we uniquified `'a` to two different regions.
I originally added uniquification to make it easier to deal with requirement 6 from the dev-guide: https://rustc-dev-guide.rust-lang.org/solve/trait-solving.html#requirements
> ### 6. Trait solving must be (free) lifetime agnostic
>
> Trait solving during codegen should have the same result as during typeck. As we erase
> all free regions during codegen we must not rely on them during typeck. A noteworthy example
> is special behavior for `'static`.
cc https://github.com/rust-lang/rustc-dev-guide/pull/1671
Relying on regions being identical may cause ICE during MIR typeck, but even without this PR we can end up relying on that as type inference vars can resolve to types which contain an identical region. Let's land this and deal with any ICE that crop up as we go. Will look at this issue again before stabilization.
r? ```@compiler-errors```
Implement support for `GeneratorWitnessMIR` in new solver
r? ```@cjgillot```
I mostly want this to cut down the number of failing UI tests when running the UI test suite with `--compare-mode=next-solver`, but there doesn't seem like much reason to block implementing this since it adds minimal complexity to the existing structural traits impl in the new solver.
If others are against adding this for some reason, then maybe we should just make `GeneratorWitnessMIR` return `NoSolution` for these traits. Anything but an ICE please 😸🧊
Closures always implement `FnOnce` in new solver
We should process `[closure]: FnOnce(Tys...) -> Ty` obligations *before* fallback and closure analysis. We can do this by taking advantage of the fact that `FnOnce` is always implemented by closures, even before we definitely know the closure kind.
Fixescompiler-errors/next-solver-hir-issues#15
r? ``@oli-obk`` (trying to spread the reviewer load for new trait solver prs, and this one is pretty self-contained, though feel free to reassign 😸)
Don't ICE on placeholder consts in deep reject
Since we canonicalize const params into placeholder consts, we need to be able to handle them during deep reject.
r? `@lcnr` (though maybe `@oli-obk` can look at this one too, if he wants 😸)
Fixescompiler-errors/next-solver-hir-issues#10
Canonicalize float var as float in new solver
Typo in new canonicalizer -- we should be canonicalizing float vars as `CanonicalTyVarKind::Float`, not `CanonicalTyVarKind::Int`.
Fixescompiler-errors/next-solver-hir-issues#9
Don't ICE on `DiscriminantKind` projection in new solver
As title says, since we now actually call `Ty::discriminant_kind` on placeholder types 😃
Also drive-by simplify `Pointee::Metadata` projection logic, and fix the UI test because the `<T as Pointee>::Metadata` tests weren't actually exercising the new projection logic, since we still eagerly normalize (which hits `project.rs` in the old solver) in HIR typeck.
r? `@lcnr` tho feel free to re-roll, this pr is very low-priority and not super specific to the new trait solver.
Fixescompiler-errors/next-solver-hir-issues#14
Implement non-const `Destruct` trait in new solver
Makes it so that we can call stdlib methods like `Option::map` in **non-const** environments, since *many* stdlib methods have `Destruct` bounds 😅
This doesn't bother to implement `const Destruct` yet, but it shouldn't be too hard to do so. Just didn't bother since we already don't have much support for const traits in the new solver anyways. I'd be happy to add skeleton support for `const Destruct`, though, if the reviewer desires.
Rollup of 7 pull requests
Successful merges:
- #108541 (Suppress `opaque_hidden_inferred_bound` for nested RPITs)
- #109137 (resolve: Querify most cstore access methods (subset 2))
- #109380 (add `known-bug` test for unsoundness issue)
- #109462 (Make alias-eq have a relation direction (and rename it to alias-relate))
- #109475 (Simpler checked shifts in MIR building)
- #109504 (Stabilize `arc_into_inner` and `rc_into_inner`.)
- #109506 (make param bound vars visibly bound vars with -Zverbose)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
new solver cleanup + implement coherence
the cleanup:
- change `Certainty::unify_and` to consider ambig + overflow to be ambig
- rename `trait_candidate_should_be_dropped_in_favor_of` to `candidate_should_be_dropped_in_favor_of`
- remove outdated fixme
For coherence I mostly just add an ambiguous candidate if the current trait ref is unknowable. I am doing the same for reservation impl where I also just add an ambiguous candidate.