Emit diagnostic when calling methods on the unit type in method chains
Fixes#104204.
What this PR does: If a method is not found somewhere in a call chain, we check if we called earlier a method with signature `(&mut T, ...) -> ()`. If this is the case then we emit a diagnostic message.
For example given input:
```
vec![1, 2, 3].into_iter().collect::<Vec<i32>>().sort_by_key(|i| i).sort();
```
the current output is:
```
error[E0599]: no method named `sort` found for unit type `()` in the current scope
--> hello.rs:3:72
|
3 | vec![1, 2, 3].into_iter().collect::<Vec<i32>>().sort_by_key(|i| i).sort();
| ^^^^ method not found in `()`
```
after this PR it will be:
```
error[E0599]: no method named `sort` found for unit type `()` in the current scope
--> ./hello.rs:3:72
|
3 | vec![1, 2, 3].into_iter().collect::<Vec<i32>>().sort_by_key(|i| i).sort();
| ^^^^ method not found in `()`
|
note: method `sort_by_key` modifies its receiver in-place, it is not meant to be used in method chains.
--> ./hello.rs:3:53
|
3 | vec![1, 2, 3].into_iter().collect::<Vec<i32>>().sort_by_key(|i| i).sort();
| ^^^^^^^^^^^ this call modifies its receiver in-place
```
Fall back to old metadata computation when type references errors
Projection is a bit too aggressive normalizing `<dyn Trait<[type error]> as Pointee>::Metadata` to `[type error]`, rather than to `DynMetadata<..>`. Side-step that by just falling back to the old structural metadata computation.
Fixes#109078
Make fns from other crates with RPITIT work for -Zlower-impl-trait-in-trait-to-assoc-ty
Only the last two commits are meaningful.
r? `@compiler-errors`
Remove some direct calls to local_def_id_to_hir_id on diagnostics
Was playing with `tests/ui/impl-trait/in-trait/default-body-with-rpit.rs` and was able to remove some ICEs. Still getting ...
```
error[E0277]: `impl Future<Output = Foo::{opaque#0}>` is not a future
--> tests/ui/impl-trait/in-trait/default-body-with-rpit.rs:10:28
|
10 | async fn baz(&self) -> impl Debug {
| ^^^^^^^^^^ `impl Future<Output = Foo::{opaque#0}>` is not a future
|
= help: the trait `Future` is not implemented for `impl Future<Output = Foo::{opaque#0}>`
= note: impl Future<Output = Foo::{opaque#0}> must be a future or must implement `IntoFuture` to be awaited
note: required by a bound in `Foo::{opaque#1}`
--> tests/ui/impl-trait/in-trait/default-body-with-rpit.rs:10:28
|
10 | async fn baz(&self) -> impl Debug {
| ^^^^^^^^^^ required by this bound in `Foo::{opaque#1}`
error[E0277]: the size for values of type `impl Future<Output = Foo::{opaque#0}>` cannot be known at compilation time
--> tests/ui/impl-trait/in-trait/default-body-with-rpit.rs:10:28
|
10 | async fn baz(&self) -> impl Debug {
| ^^^^^^^^^^ doesn't have a size known at compile-time
|
= help: the trait `Sized` is not implemented for `impl Future<Output = Foo::{opaque#0}>`
note: required by a bound in `Foo::{opaque#1}`
--> tests/ui/impl-trait/in-trait/default-body-with-rpit.rs:10:28
|
10 | async fn baz(&self) -> impl Debug {
| ^^^^^^^^^^ required by this bound in `Foo::{opaque#1}`
error: internal compiler error: compiler/rustc_hir_typeck/src/closure.rs:724:18: async fn generator return type not an inference variable: Foo::{opaque#1}<'_>
--> tests/ui/impl-trait/in-trait/default-body-with-rpit.rs:10:39
|
10 | async fn baz(&self) -> impl Debug {
| _______________________________________^
11 | | ""
12 | | }
| |_____^
```
But I guess this is a little bit of progress anyway.
This one goes on top of #108700 and #108945
r? `@compiler-errors`
Remove tests/ui/impl-trait/in-trait/new-lowering-strategy in favor of using revisions on existing tests
r? `@compiler-errors`
This one again sits on top of existing approved PRs and it still needs to add revisions to tests in `tests/ui/impl-trait/in-trait` as it only does so for async in traits.
Support for Fuchsia RISC-V target
Fuchsia is in the process of implementing the RISC-V support. This change implements the minimal Rust compiler support. The support for building runtime libraries will be implemented in follow up changes once Fuchsia SDK has the RISC-V support.
If no method is found when checking method call, we check if we called a method with signature (&mut T, ...) -> (). If this is the case then we emit a diagnostic message
Properly allow macro expanded `format_args` invocations to uses captures
Originally, this was kinda half-allowed. There were some primitive checks in place that looked at the span to see whether the input was likely a literal. These "source literal" checks are needed because the spans created during `format_args` parsing only make sense when it is indeed a literal that was written in the source code directly.
This is orthogonal to the restriction that the first argument must be a "direct literal", not being exanpanded from macros. This restriction was imposed by [RFC 2795] on the basis of being too confusing. But this was only concerned with the argument of the invocation being a literal, not whether it was a source literal (maybe in spirit it meant it being a source literal, this is not clear to me).
Since the original check only really cared about source literals (which is good enough to deny the `format_args!(concat!())` example), macros expanding to `format_args` invocations were able to use implicit captures if they spanned the string in a way that lead back to a source string.
The "source literal" checks were not strict enough and caused ICEs in certain cases (see #106191). So I tightened it up in #106195 to really only work if it's a direct source literal.
This caused the `indoc` crate to break. `indoc` transformed the source literal by removing whitespace, which made it not a "source literal" anymore (which is required to fix the ICE). But since `indoc` spanned the literal in ways that made the old check think that it's a literal, it was able to use implicit captures (which is useful and nice for the users of `indoc`).
This commit properly seperates the previously introduced concepts of "source literal" and "direct literal" and therefore allows `indoc` invocations, which don't create "source literals" to use implicit captures again.
Fixes#106191
[RFC 2795]: https://rust-lang.github.io/rfcs/2795-format-args-implicit-identifiers.html#macro-hygiene
Fix `almost_swapped` false positive (`let mut a = b; a = a`)
Fixes `2` in #10421
changelog: [`almost_swapped`]: Fix false positive when a variable is changed to itself. (`a = a`)
Sometimes, we want to create subspans and point at code in the literal
if possible. But this doesn't always make sense, sometimes the literal
may come from macro expanded code and isn't actually there in the
source. Then, we can't really make these suggestions.
This now makes sure that the literal is actually there as we see it so
that we will not run into ICEs on weird literal transformations.
Originally, this was kinda half-allowed. There were some primitive
checks in place that looked at the span to see whether the input was
likely a literal. These "source literal" checks are needed because the
spans created during `format_args` parsing only make sense when it is
indeed a literal that was written in the source code directly.
This is orthogonal to the restriction that the first argument must be a
"direct literal", not being exanpanded from macros. This restriction was
imposed by [RFC 2795] on the basis of being too confusing. But this was
only concerned with the argument of the invocation being a literal, not
whether it was a source literal (maybe in spirit it meant it being a
source literal, this is not clear to me).
Since the original check only really cared about source literals (which
is good enough to deny the `format_args!(concat!())` example), macros
expanding to `format_args` invocations were able to use implicit
captures if they spanned the string in a way that lead back to a source
string.
The "source literal" checks were not strict enough and caused ICEs in
certain cases (see # 106191 (the space is intended to avoid spammy
backreferences)). So I tightened it up in # 106195 to really only work
if it's a direct source literal.
This caused the `indoc` crate to break. `indoc` transformed the source
literal by removing whitespace, which made it not a "source literal"
anymore (which is required to fix the ICE). But since `indoc` spanned
the literal in ways that made the old check think that it's a literal,
it was able to use implicit captures (which is useful and nice for the
users of `indoc`).
This commit properly seperates the previously introduced concepts of
"source literal" and "direct literal" and therefore allows `indoc`
invocations, which don't create "source literals" to use implicit
captures again.
[RFC 2795]: https://rust-lang.github.io/rfcs/2795-format-args-implicit-identifiers.html#macro-hygiene
Fix documentation for `derived_hash_with_manual_eq`
changelog: fix documentation for `derived_hash_with_manual_eq`
The documentation retained "vice versa" from the previous incarnation of the lint but the lint itself no longer lints against manual `Hash` implementations with a derived `PartialEq`.
I also adjusted the documentation for `PartialOrd`-`Ord` lint as "vice versa" seemed a little confusing to me there (as to what it was refering to exactly.)
The documentation retained "vice versa" from the previous incarnation of
the lint but the lint itself no longer lints against manual `Hash`
implementations with a derived `PartialEq`.
I also adjusted the documentation for `PartialOrd`-`Ord` lint as "vice
versa" seemed a little confusing to me there (as to what it was refering
to exactly.)
Remove `identity_future` indirection
This was previously needed because the indirection used to hide some unexplained lifetime errors, which it turned out were related to the `min_choice` algorithm.
Removing the indirection also solves a couple of cycle errors, large moves and makes async blocks support the `#[track_caller]`annotation.
Fixes https://github.com/rust-lang/rust/issues/104826.
Remove `identity_future` indirection
This was previously needed because the indirection used to hide some unexplained lifetime errors, which it turned out were related to the `min_choice` algorithm.
Removing the indirection also solves a couple of cycle errors, large moves and makes async blocks support the `#[track_caller]`annotation.
Fixes https://github.com/rust-lang/rust/issues/104826.
internal: add `as_slice` to `hir::Type`
~`remove_slice`~ `as_slice` is same as `remove_ref` but for slices.
Though there is `as_array` which I believe was named such because it also gets the length of the array, maybe. I am still shaky on the names feel free to suggest corrections.
enhance [`ifs_same_cond`] to warn same immutable method calls as well
fixes: #10272
---
changelog: Enhancement: [`ifs_same_cond`]: Now also detects immutable method calls.
[#10350](https://github.com/rust-lang/rust-clippy/pull/10350)
<!-- changelog_checked -->
feat: add `is_float` & `is_char` to `hir::Type`
Some useful functions we didn't have on `Type` (were present on `BuiltinType`).
Also, I am considering exposing `TyKind` with `get_kind`, let me know if that's a better idea than implementing these API extensions incrementally.
Add path of workspace root folders to status output
Hi folks! Just a quick addition to the status output. There are some colleagues of mine who use a mix of Buck and Cargo. A person spent a bit of time this past week trying to figure out there the `rust-project.json` was coming from and pointed out that `rust-analyzer: Status` could be a good place to put this information. rust-analyzer doesn't seem to record the full path of the `Cargo.toml` or the `rust-project.json`, just the root directory. While not perfect, this should be enough for people to unblock themselves on. Here's an example of `rust-analyzer: Status` on the rust-analyzer repo:
```
Workspaces:
Loaded 192 packages across 1 workspace.
Workspace roots: [AbsPath("/Users/dbarsky/Developer/rust-analyzer")]
Analysis:
57mb of files
0b of index symbols (0)
2514 trees, 128 preserved
29535 trees, 128 preserved (Macros)
0b in total
File info:
Crate: rust_analyzer(CrateId(131))
Dependencies: proc_macro=CrateId(5), core=CrateId(2), alloc=CrateId(0), std=CrateId(7), test=CrateId(9), always_assert=CrateId(12), anyhow=CrateId(13), cfg=CrateId(25), crossbeam_channel=CrateId(35), dissimilar=CrateId(41), expect_test=CrateId(46), flycheck=CrateId(50), hir=CrateId(56), hir_def=CrateId(57), hir_ty=CrateId(59), ide=CrateId(63), ide_db=CrateId(66), ide_ssr=CrateId(68), itertools=CrateId(73), jod_thread=CrateId(75), lsp_server=CrateId(83), lsp_types=CrateId(85), mbe=CrateId(87), num_cpus=CrateId(96), oorandom=CrateId(99), parking_lot=CrateId(102), proc_macro_api=CrateId(110), proc_macro_srv=CrateId(111), profile=CrateId(118), project_model=CrateId(119), rayon=CrateId(125), rustc_hash=CrateId(136), scip=CrateId(141), serde=CrateId(145), serde_json=CrateId(147), sourcegen=CrateId(153), stdx=CrateId(155), syntax=CrateId(158), test_utils=CrateId(159), threadpool=CrateId(165), toolchain=CrateId(170), tracing=CrateId(171), tracing_log=CrateId(174), tracing_subscriber=CrateId(175), tracing_tree=CrateId(176), tt=CrateId(177), vfs=CrateId(188), vfs_notify=CrateId(189), xflags=CrateId(192), xshell=CrateId(194)
```