Fix several asm! related issues
This is a combination of several fixes, each split into a separate commit. Splitting these into PRs is not practical since they conflict with each other.
Fixes#92378Fixes#85247
r? ``@nagisa``
The previous approach of checking for the reserve-r9 target feature
didn't actually work because LLVM only sets this feature very late when
initializing the per-function subtarget.
Adopt let else in more places
Continuation of #89933, #91018, #91481, #93046, #93590, #94011.
I have extended my clippy lint to also recognize tuple passing and match statements. The diff caused by fixing it is way above 1 thousand lines. Thus, I split it up into multiple pull requests to make reviewing easier. This is the biggest of these PRs and handles the changes outside of rustdoc, rustc_typeck, rustc_const_eval, rustc_trait_selection, which were handled in PRs #94139, #94142, #94143, #94144.
Add MemTagSanitizer Support
Add support for the LLVM [MemTagSanitizer](https://llvm.org/docs/MemTagSanitizer.html).
On hardware which supports it (see caveats below), the MemTagSanitizer can catch bugs similar to AddressSanitizer and HardwareAddressSanitizer, but with lower overhead.
On a tag mismatch, a SIGSEGV is signaled with code SEGV_MTESERR / SEGV_MTEAERR.
# Usage
`-Zsanitizer=memtag -C target-feature="+mte"`
# Comments/Caveats
* MemTagSanitizer is only supported on AArch64 targets with hardware support
* Requires `-C target-feature="+mte"`
* LLVM MemTagSanitizer currently only performs stack tagging.
# TODO
* Tests
* Example
Add a stack-`pin!`-ning macro to `core::pin`.
- https://github.com/rust-lang/rust/issues/93178
`pin!` allows pinning a value to the stack. Thanks to being implemented in the stdlib, which gives access to `macro` macros, and to the private `.pointer` field of the `Pin` wrapper, [it was recently discovered](https://rust-lang.zulipchat.com/#narrow/stream/187312-wg-async-foundations/topic/pin!.20.E2.80.94.20the.20.22definitive.22.20edition.20.28a.20rhs-compatible.20pin-nin.2E.2E.2E/near/268731241) ([archive link](https://zulip-archive.rust-lang.org/stream/187312-wg-async-foundations/topic/A.20rhs-compatible.20pin-ning.20macro.html#268731241)), contrary to popular belief, that it is actually possible to implement and feature such a macro:
```rust
let foo: Pin<&mut PhantomPinned> = pin!(PhantomPinned);
stuff(foo);
```
or, directly:
```rust
stuff(pin!(PhantomPinned));
```
- For context, historically, this used to require one of the two following syntaxes:
- ```rust
let foo = PhantomPinned;
pin!(foo);
stuff(foo);
```
- ```rust
pin! {
let foo = PhantomPinned;
}
stuff(foo);
```
This macro thus allows, for instance, doing things like:
```diff
fn block_on<T>(fut: impl Future<Output = T>) -> T {
// Pin the future so it can be polled.
- let mut fut = Box::pin(fut);
+ let mut fut = pin!(fut);
// Create a new context to be passed to the future.
let t = thread::current();
let waker = Arc::new(ThreadWaker(t)).into();
let mut cx = Context::from_waker(&waker);
// Run the future to completion.
loop {
match fut.as_mut().poll(&mut cx) {
Poll::Ready(res) => return res,
Poll::Pending => thread::park(),
}
}
}
```
- _c.f._, https://doc.rust-lang.org/1.58.1/alloc/task/trait.Wake.html
And so on, and so forth.
I don't think such an API can get better than that, barring full featured language support (`&pin` references or something), so I see no reason not to start experimenting with featuring this in the stdlib already 🙂
- cc `@rust-lang/wg-async-foundations` \[EDIT: this doesn't seem to have pinged anybody 😩, thanks `@yoshuawuyts` for the real ping\]
r? `@joshtriplett`
___
# Docs preview
https://user-images.githubusercontent.com/9920355/150605731-1f45c2eb-c9b0-4ce3-b17f-2784fb75786e.mp4
___
# Implementation
The implementation ends up being dead simple (so much it's embarrassing):
```rust
pub macro pin($value:expr $(,)?) {
Pin { pointer: &mut { $value } }
}
```
_and voilà_!
- The key for it working lies in [the rules governing the scope of anonymous temporaries](https://doc.rust-lang.org/1.58.1/reference/destructors.html#temporary-lifetime-extension).
<details><summary>Comments and context</summary>
This is `Pin::new_unchecked(&mut { $value })`, so, for starters, let's
review such a hypothetical macro (that any user-code could define):
```rust
macro_rules! pin {( $value:expr ) => (
match &mut { $value } { at_value => unsafe { // Do not wrap `$value` in an `unsafe` block.
$crate::pin::Pin::<&mut _>::new_unchecked(at_value)
}}
)}
```
Safety:
- `type P = &mut _`. There are thus no pathological `Deref{,Mut}` impls that would break `Pin`'s invariants.
- `{ $value }` is braced, making it a _block expression_, thus **moving** the given `$value`, and making it _become an **anonymous** temporary_.
By virtue of being anonynomous, it can no longer be accessed, thus preventing any attemps to `mem::replace` it or `mem::forget` it, _etc._
This gives us a `pin!` definition that is sound, and which works, but only in certain scenarios:
- If the `pin!(value)` expression is _directly_ fed to a function call:
`let poll = pin!(fut).poll(cx);`
- If the `pin!(value)` expression is part of a scrutinee:
```rust
match pin!(fut) { pinned_fut => {
pinned_fut.as_mut().poll(...);
pinned_fut.as_mut().poll(...);
}} // <- `fut` is dropped here.
```
Alas, it doesn't work for the more straight-forward use-case: `let` bindings.
```rust
let pinned_fut = pin!(fut); // <- temporary value is freed at the end of this statement
pinned_fut.poll(...) // error[E0716]: temporary value dropped while borrowed
// note: consider using a `let` binding to create a longer lived value
```
- Issues such as this one are the ones motivating https://github.com/rust-lang/rfcs/pull/66
This makes such a macro incredibly unergonomic in practice, and the reason most macros out there had to take the path of being a statement/binding macro (_e.g._, `pin!(future);`) instead of featuring the more intuitive ergonomics of an expression macro.
Luckily, there is a way to avoid the problem. Indeed, the problem stems from the fact that a temporary is dropped at the end of its enclosing statement when it is part of the parameters given to function call, which has precisely been the case with our `Pin::new_unchecked()`!
For instance,
```rust
let p = Pin::new_unchecked(&mut <temporary>);
```
becomes:
```rust
let p = { let mut anon = <temporary>; &mut anon };
```
However, when using a literal braced struct to construct the value, references to temporaries can then be taken. This makes Rust change the lifespan of such temporaries so that they are, instead, dropped _at the end of the enscoping block_.
For instance,
```rust
let p = Pin { pointer: &mut <temporary> };
```
becomes:
```rust
let mut anon = <temporary>;
let p = Pin { pointer: &mut anon };
```
which is *exactly* what we want.
Finally, we don't hit problems _w.r.t._ the privacy of the `pointer` field, or the unqualified `Pin` name, thanks to `decl_macro`s being _fully_ hygienic (`def_site` hygiene).
</details>
___
# TODO
- [x] Add compile-fail tests with attempts to break the `Pin` invariants thanks to the macro (_e.g._, try to access the private `.pointer` field, or see what happens if such a pin is used outside its enscoping scope (borrow error));
- [ ] Follow-up stuff:
- [ ] Try to experiment with adding `pin!` to the prelude: this may require to be handled with some extra care, as it may lead to issues reminiscent of those of `assert_matches!`: https://github.com/rust-lang/rust/issues/82913
- [x] Create the tracking issue.
This thus still makes it technically possible to enable the feature, and thus
to trigger UB without `unsafe`, but this is fine since incomplete features are
known to be potentially unsound (labelled "may not be safe").
This follows from the discussion at https://github.com/rust-lang/rust/pull/93176#discussion_r799413561
Couple of driver cleanups
* Remove the `RustcDefaultCalls` struct, which hasn't been necessary since the introduction of `rustc_interface`.
* Move the `setup_callbacks` call around for a tiny code deduplication.
* Remove the `SPAN_DEBUG` global as it isn't actually necessary.
The only difference between the default and rustc_interface set version
is that the default accesses the source map from SESSION_GLOBALS while
the rustc_interface version accesses the source map from the global
TyCtxt. SESSION_GLOBALS is always set while running the compiler while
the global TyCtxt is not always set. If the global TyCtxt is set, it's
source map is identical to the one in SESSION_GLOBALS
Make `span_extend_to_prev_str()` more robust
Fixes#91560. The logic in `span_extend_to_prev_str()` is currently quite brittle and fails if there is extra whitespace or something else in between, and it also should return an `Option` but doesn't currently.
Fix invalid special casing of the unreachable! macro
This pull-request fix an invalid special casing of the `unreachable!` macro in the same way the `panic!` macro was solved, by adding two new internal only macros `unreachable_2015` and `unreachable_2021` edition dependent and turn `unreachable!` into a built-in macro that do dispatching. This logic is stolen from the `panic!` macro.
~~This pull-request also adds an internal feature `format_args_capture_non_literal` that allows capturing arguments from formatted string that expanded from macros. The original RFC #2795 mentioned this as a future possibility. This feature is [required](https://github.com/rust-lang/rust/issues/92137#issuecomment-1018630522) because of concatenation that needs to be done inside the macro:~~
```rust
$crate::concat!("internal error: entered unreachable code: ", $fmt)
```
**In summary** the new behavior for the `unreachable!` macro with this pr is:
Edition 2021:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is 5
```
Edition <= 2018:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is {x}
```
Also note that the change in this PR are **insta-stable** and **breaking changes** but this a considered as being a [bug](https://github.com/rust-lang/rust/issues/92137#issuecomment-998441613).
If someone could start a perf run and then a crater run this would be appreciated.
Fixes https://github.com/rust-lang/rust/issues/92137
Add `intrinsics::const_deallocate`
Tracking issue: #79597
Related: #91884
This allows deallocation of a memory allocated by `intrinsics::const_allocate`. At the moment, this can be only used to reduce memory usage, but in the future this may be useful to detect memory leaks (If an allocated memory remains after evaluation, raise an error...?).
Introduce a limit to Levenshtein distance computation
Incorporate distance limit from `find_best_match_for_name` directly into
Levenshtein distance computation.
Use the string size difference as a lower bound on the distance and exit
early when it exceeds the specified limit.
After finding a candidate within a limit, lower the limit further to
restrict the search space.
Incorporate distance limit from `find_best_match_for_name` directly into
Levenshtein distance computation.
Use the string size difference as a lower bound on the distance and exit
early when it exceeds the specified limit.
After finding a candidate within a limit, lower the limit further to
restrict the search space.
Make `Decodable` and `Decoder` infallible.
`Decoder` has two impls:
- opaque: this impl is already partly infallible, i.e. in some places it
currently panics on failure (e.g. if the input is too short, or on a
bad `Result` discriminant), and in some places it returns an error
(e.g. on a bad `Option` discriminant). The number of places where
either happens is surprisingly small, just because the binary
representation has very little redundancy and a lot of input reading
can occur even on malformed data.
- json: this impl is fully fallible, but it's only used (a) for the
`.rlink` file production, and there's a `FIXME` comment suggesting it
should change to a binary format, and (b) in a few tests in
non-fundamental ways. Indeed #85993 is open to remove it entirely.
And the top-level places in the compiler that call into decoding just
abort on error anyway. So the fallibility is providing little value, and
getting rid of it leads to some non-trivial performance improvements.
Much of this PR is pretty boring and mechanical. Some notes about
a few interesting parts:
- The commit removes `Decoder::{Error,error}`.
- `InternIteratorElement::intern_with`: the impl for `T` now has the same
optimization for small counts that the impl for `Result<T, E>` has,
because it's now much hotter.
- Decodable impls for SmallVec, LinkedList, VecDeque now all use
`collect`, which is nice; the one for `Vec` uses unsafe code, because
that gave better perf on some benchmarks.
r? `@bjorn3`
Print a helpful message if unwinding aborts when it reaches a nounwind function
This is implemented by routing `TerminatorKind::Abort` back through the panic handler, but with a special flag in the `PanicInfo` which indicates that the panic handler should *not* attempt to unwind the stack and should instead abort immediately.
This is useful for the planned change in https://github.com/rust-lang/lang-team/issues/97 which would make `Drop` impls `nounwind` by default.
### Code
```rust
#![feature(c_unwind)]
fn panic() {
panic!()
}
extern "C" fn nounwind() {
panic();
}
fn main() {
nounwind();
}
```
### Before
```
$ ./test
thread 'main' panicked at 'explicit panic', test.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Illegal instruction (core dumped)
```
### After
```
$ ./test
thread 'main' panicked at 'explicit panic', test.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
thread 'main' panicked at 'panic in a function that cannot unwind', test.rs:7:1
stack backtrace:
0: 0x556f8f86ec9b - <std::sys_common::backtrace::_print::DisplayBacktrace as core::fmt::Display>::fmt::hdccefe11a6ac4396
1: 0x556f8f88ac6c - core::fmt::write::he152b28c41466ebb
2: 0x556f8f85d6e2 - std::io::Write::write_fmt::h0c261480ab86f3d3
3: 0x556f8f8654fa - std::panicking::default_hook::{{closure}}::h5d7346f3ff7f6c1b
4: 0x556f8f86512b - std::panicking::default_hook::hd85803a1376cac7f
5: 0x556f8f865a91 - std::panicking::rust_panic_with_hook::h4dc1c5a3036257ac
6: 0x556f8f86f079 - std::panicking::begin_panic_handler::{{closure}}::hdda1d83c7a9d34d2
7: 0x556f8f86edc4 - std::sys_common::backtrace::__rust_end_short_backtrace::h5b70ed0cce71e95f
8: 0x556f8f865592 - rust_begin_unwind
9: 0x556f8f85a764 - core::panicking::panic_no_unwind::h2606ab3d78c87899
10: 0x556f8f85b910 - test::nounwind::hade6c7ee65050347
11: 0x556f8f85b936 - test::main::hdc6e02cb36343525
12: 0x556f8f85b7e3 - core::ops::function::FnOnce::call_once::h4d02663acfc7597f
13: 0x556f8f85b739 - std::sys_common::backtrace::__rust_begin_short_backtrace::h071d40135adb0101
14: 0x556f8f85c149 - std::rt::lang_start::{{closure}}::h70dbfbf38b685e93
15: 0x556f8f85c791 - std::rt::lang_start_internal::h798f1c0268d525aa
16: 0x556f8f85c131 - std::rt::lang_start::h476a7ee0a0bb663f
17: 0x556f8f85b963 - main
18: 0x7f64c0822b25 - __libc_start_main
19: 0x556f8f85ae8e - _start
20: 0x0 - <unknown>
thread panicked while panicking. aborting.
Aborted (core dumped)
```
`Decoder` has two impls:
- opaque: this impl is already partly infallible, i.e. in some places it
currently panics on failure (e.g. if the input is too short, or on a
bad `Result` discriminant), and in some places it returns an error
(e.g. on a bad `Option` discriminant). The number of places where
either happens is surprisingly small, just because the binary
representation has very little redundancy and a lot of input reading
can occur even on malformed data.
- json: this impl is fully fallible, but it's only used (a) for the
`.rlink` file production, and there's a `FIXME` comment suggesting it
should change to a binary format, and (b) in a few tests in
non-fundamental ways. Indeed #85993 is open to remove it entirely.
And the top-level places in the compiler that call into decoding just
abort on error anyway. So the fallibility is providing little value, and
getting rid of it leads to some non-trivial performance improvements.
Much of this commit is pretty boring and mechanical. Some notes about
a few interesting parts:
- The commit removes `Decoder::{Error,error}`.
- `InternIteratorElement::intern_with`: the impl for `T` now has the same
optimization for small counts that the impl for `Result<T, E>` has,
because it's now much hotter.
- Decodable impls for SmallVec, LinkedList, VecDeque now all use
`collect`, which is nice; the one for `Vec` uses unsafe code, because
that gave better perf on some benchmarks.
Improve SIMD casts
* Allows `simd_cast` intrinsic to take `usize` and `isize`
* Adds `simd_as` intrinsic, which is the same as `simd_cast` except for saturating float-to-int conversions (matching the behavior of `as`).
cc `@workingjubilee`
Avoid unnecessary monomorphization of inline asm related functions
This should reduce build time for codegen backends by avoiding duplicated monomorphization of certain inline asm related functions for each passed in closure type.
Implement `#[rustc_must_implement_one_of]` attribute
This PR adds a new attribute — `#[rustc_must_implement_one_of]` that allows changing the "minimal complete definition" of a trait. It's similar to GHC's minimal `{-# MINIMAL #-}` pragma, though `#[rustc_must_implement_one_of]` is weaker atm.
Such attribute was long wanted. It can be, for example, used in `Read` trait to make transitions to recently added `read_buf` easier:
```rust
#[rustc_must_implement_one_of(read, read_buf)]
pub trait Read {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let mut buf = ReadBuf::new(buf);
self.read_buf(&mut buf)?;
Ok(buf.filled_len())
}
fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> {
default_read_buf(|b| self.read(b), buf)
}
}
impl Read for Ty0 {}
//^ This will fail to compile even though all `Read` methods have default implementations
// Both of these will compile just fine
impl Read for Ty1 {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> { /* ... */ }
}
impl Read for Ty2 {
fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> { /* ... */ }
}
```
For now, this is implemented as an internal attribute to start experimenting on the design of this feature. In the future we may want to extend it:
- Allow arbitrary requirements like `a | (b & c)`
- Allow multiple requirements like
- ```rust
#[rustc_must_implement_one_of(a, b)]
#[rustc_must_implement_one_of(c, d)]
```
- Make it appear in rustdoc documentation
- Change the syntax?
- Etc
Eventually, we should make an RFC and make this (or rather similar) attribute public.
---
I'm fairly new to compiler development and not at all sure if the implementation makes sense, but at least it passes tests :)
Remove deprecated LLVM-style inline assembly
The `llvm_asm!` was deprecated back in #87590 1.56.0, with intention to remove
it once `asm!` was stabilized, which already happened in #91728 1.59.0. Now it
is time to remove `llvm_asm!` to avoid continued maintenance cost.
Closes#70173.
Closes#92794.
Closes#87612.
Closes#82065.
cc `@rust-lang/wg-inline-asm`
r? `@Amanieu`
Add diagnostic items for macros
For use in Clippy, it adds diagnostic items to all the stable public macros
Clippy has lints that look for almost all of these (currently by name or path), but there are a few that aren't currently part of any lint, I could remove those if it's preferred to add them as needed rather than ahead of time
Ensure that `Fingerprint` caching respects hashing configuration
Fixes#92266
In some `HashStable` impls, we use a cache to avoid re-computing
the same `Fingerprint` from the same structure (e.g. an `AdtDef`).
However, the `StableHashingContext` used can be configured to
perform hashing in different ways (e.g. skipping `Span`s). This
configuration information is not included in the cache key,
which will cause an incorrect `Fingerprint` to be used if
we hash the same structure with different `StableHashingContext`
settings.
To fix this, the configuration settings of `StableHashingContext`
are split out into a separate `HashingControls` struct. This
struct is used as part of the cache key, ensuring that our caches
always produce the correct result for the given settings.
With this in place, we now turn off `Span` hashing during the
entire process of computing the hash included in legacy symbols.
This current has no effect, but will matter when a future PR
starts hashing more `Span`s that we currently skip.
Fixes#92266
In some `HashStable` impls, we use a cache to avoid re-computing
the same `Fingerprint` from the same structure (e.g. an `AdtDef`).
However, the `StableHashingContext` used can be configured to
perform hashing in different ways (e.g. skipping `Span`s). This
configuration information is not included in the cache key,
which will cause an incorrect `Fingerprint` to be used if
we hash the same structure with different `StableHashingContext`
settings.
To fix this, the configuration settings of `StableHashingContext`
are split out into a separate `HashingControls` struct. This
struct is used as part of the cache key, ensuring that our caches
always produce the correct result for the given settings.
With this in place, we now turn off `Span` hashing during the
entire process of computing the hash included in legacy symbols.
This current has no effect, but will matter when a future PR
starts hashing more `Span`s that we currently skip.
Add `#[rustc_clean(loaded_from_disk)]` to assert loading of query result
Currently, you can use `#[rustc_clean]` to assert to that a particular
query (technically, a `DepNode`) is green or red. However, a green
`DepNode` does not mean that the query result was actually deserialized
from disk - we might have never re-run a query that needed the result.
Some incremental tests are written as regression tests for ICEs that
occured during query result decoding. Using
`#[rustc_clean(loaded_from_disk="typeck")]`, you can now assert
that the result of a particular query (e.g. `typeck`) was actually
loaded from disk, in addition to being green.
Currently, you can use `#[rustc_clean]` to assert to that a particular
query (technically, a `DepNode`) is green or red. However, a green
`DepNode` does not mean that the query result was actually deserialized
from disk - we might have never re-run a query that needed the result.
Some incremental tests are written as regression tests for ICEs that
occured during query result decoding. Using
`#[rustc_clean(loaded_from_disk="typeck")]`, you can now assert
that the result of a particular query (e.g. `typeck`) was actually
loaded from disk, in addition to being green.
Remove `SymbolStr`
This was originally proposed in https://github.com/rust-lang/rust/pull/74554#discussion_r466203544. As well as removing the icky `SymbolStr` type, it allows the removal of a lot of `&` and `*` occurrences.
Best reviewed one commit at a time.
r? `@oli-obk`
By changing `as_str()` to take `&self` instead of `self`, we can just
return `&str`. We're still lying about lifetimes, but it's a smaller lie
than before, where `SymbolStr` contained a (fake) `&'static str`!
manually implement `Hash` for `DefId`
This might speed up hashing for hashers that can work on individual u64s. Just as an experiment, suggested in a reddit thread on `FxHasher`. cc `@nnethercote`
Note that this should not be merged as is without cfg-ing the code path for 64 bits.
This also reorders the fields to reduce the assembly operations for hashing
and changes two UI tests that depended on the former ordering because of
hashmap iteration order.
Rollup of 6 pull requests
Successful merges:
- #87599 (Implement concat_bytes!)
- #89999 (Update std::env::temp_dir to use GetTempPath2 on Windows when available.)
- #90796 (Remove the reg_thumb register class for asm! on ARM)
- #91042 (Use Vec extend instead of repeated pushes on several places)
- #91634 (Do not attempt to suggest help for overly malformed struct/function call)
- #91685 (Install llvm tools to sysroot when assembling local toolchain)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Remove the reg_thumb register class for asm! on ARM
Also restricts r8-r14 from being used on Thumb1 targets as per #90736.
cc ``@Lokathor``
r? ``@joshtriplett``
Implement concat_bytes!
This implements the unstable `concat_bytes!` macro, which has tracking issue #87555. It can be used like:
```rust
#![feature(concat_bytes)]
fn main() {
assert_eq!(concat_bytes!(), &[]);
assert_eq!(concat_bytes!(b'A', b"BC", [68, b'E', 70]), b"ABCDEF");
}
```
If strings or characters are used where byte strings or byte characters are required, it suggests adding a `b` prefix. If a number is used outside of an array it suggests arrayifying it. If a boolean is used it suggests replacing it with the numeric value of that number. Doubly nested arrays of bytes are disallowed.
Support AVR for inline asm!
A first pass at support for the AVR platform in inline `asm!`. Passes the initial compiler tests, have not yet done more complete verification.
In particular, the register classes could use a lot more fleshing out, this draft PR so far only includes the most basic.
cc `@Amanieu` `@dylanmckay`
std: Stabilize the `thread_local_const_init` feature
This commit is intended to follow the stabilization disposition of the
FCP that has now finished in #84223. This stabilizes the ability to flag
thread local initializers as `const` expressions which enables the macro
to generate more efficient code for accessing it, notably removing
runtime checks for initialization.
More information can also be found in #84223 as well as the tests where
the feature usage was removed in this PR.
Closes#84223
Keep spans for generics in `#[derive(_)]` desugaring
Keep the spans for generics coming from a `derive`d Item, so that errors
and suggestions have better detail.
Fix#84003.
Reintroduce `into_future` in `.await` desugaring
This is a reintroduction of the remaining parts from https://github.com/rust-lang/rust/pull/65244 that have not been relanded yet.
This isn't quite ready to merge yet. The last attempt was reverting due to performance regressions, so we need to make sure this does not introduce those issues again.
Issues #67644, #67982
/cc `@yoshuawuyts`
* Annotate `derive`d spans from the user's code with the appropciate context
* Add `Span::can_be_used_for_suggestion` to query if the underlying span
at the users' code
This commit is intended to follow the stabilization disposition of the
FCP that has now finished in #84223. This stabilizes the ability to flag
thread local initializers as `const` expressions which enables the macro
to generate more efficient code for accessing it, notably removing
runtime checks for initialization.
More information can also be found in #84223 as well as the tests where
the feature usage was removed in this PR.
Closes#84223
Print associated types on opaque `impl Trait` types
This PR generalizes #91021, printing associated types for all opaque `impl Trait` types instead of just special-casing for future.
before:
```
error[E0271]: type mismatch resolving `<impl Iterator as Iterator>::Item == u32`
```
after:
```
error[E0271]: type mismatch resolving `<impl Iterator<Item = usize> as Iterator>::Item == u32`
```
---
Questions:
1. I'm kinda lost in binders hell with this one. Is all of the `rebind`ing necessary?
2. Is there a map collection type that will give me a stable iteration order? Doesn't seem like TraitRef is Ord, so I can't just sort later..
3. I removed the logic that suppresses printing generator projection types. It creates outputs like this [gist](https://gist.github.com/compiler-errors/d6f12fb30079feb1ad1d5f1ab39a3a8d). Should I put that back?
4. I also added spaces between traits, `impl A+B` -> `impl A + B`. I quite like this change, but is there a good reason to keep it like that?
r? ````@estebank````
Split inline const to two feature gates and mark expression position inline const complete
This PR splits inline const in pattern position into its own `#![feature(inline_const_pat)]` feature gate, and make the usage in expression position complete.
I think I have resolved most outstanding issues related to `inline_const` with #89561 and other PRs. The only thing left that I am aware of is #90150 and the lack of lifetime checks when inline const is used in pattern position (FIXME in #89561). Implementation-wise when used in pattern position it has to be lowered during MIR building while in expression position it's evaluated only when monomorphizing (just like normal consts), so it makes some sense to separate it into two feature gates so one can progress without being blocked by another.
``@rustbot`` label: T-compiler F-inline_const
Suggestion to wrap inner types using 'allocator_api' in tuple
This PR provides a suggestion to wrap the inner types in tuple when being along with 'allocator_api'.
Closes https://github.com/rust-lang/rust/issues/83250
```rust
fn main() {
let _vec: Vec<u8, _> = vec![]; //~ ERROR use of unstable library feature 'allocator_api'
}
```
```diff
error[E0658]: use of unstable library feature 'allocator_api'
--> $DIR/suggest-vec-allocator-api.rs:2:23
|
LL | let _vec: Vec<u8, _> = vec![];
- | ^
+ | ----^
+ | |
+ | help: consider wrapping the inner types in tuple: `(u8, _)`
|
= note: see issue #32838 <https://github.com/rust-lang/rust/issues/32838> for more information
= help: add `#![feature(allocator_api)]` to the crate attributes to enable
```
Fix `non-constant value` ICE (#90878)
This also fixes the same suggestion, which was kind of broken, because it just searched for the last occurence of `const` to replace with a `let`. This works great in some cases, but when there is no const and a leading space to the file, it doesn't work and panic with overflow because it thought that it had found a const.
I also changed the suggestion to only trigger if the `const` and the non-constant value are on the same line, because if they aren't, the suggestion is very likely to be wrong.
Also don't trigger the suggestion if the found `const` is on line 0, because that triggers the ICE.
Asking Esteban to review since he was the last one to change the relevant code.
r? ``@estebank``
Fixes#90878
This function parameter attribute was introduced in https://github.com/rust-lang/rust/pull/44866 as an intermediate step in implementing `impl Trait`, it's not necessary or used anywhere by itself.
This also fixes the same suggestion, which was kind of broken, because it just searched for the last occurence of `const` to replace with a `let`. This works great in some cases, but when there is no const and a leading space to the file, it doesn't work and panic with overflow because it thought that it had found a const.
I also changed the suggestion to only trigger if the `const` and the non-constant value are on the same line, because if they aren't, the suggestion is very likely to be wrong.
Also don't trigger the suggestion if the found `const` is on line 0, because that triggers the ICE.
Don't destructure args tuple in format_args!
This allows Clippy to parse the HIR more simply since `arg0` is changed to `_args.0`. (cc rust-lang/rust-clippy#7843). From rustc's perspective, I think this is something between a lateral move and a tiny improvement since there are fewer bindings.
r? `@m-ou-se`
Add features gates for experimental asm features
This PR splits off parts of `asm!` into separate features because they are not ready for stabilization.
Specifically this adds:
- `asm_const` for `const` operands.
- `asm_sym` for `sym` operands.
- `asm_experimental_arch` for architectures other than x86, x86_64, arm, aarch64 and riscv.
r? `@nagisa`
Improve and test cross-crate hygiene
- Decode the parent expansion for traits and enums in `rustc_resolve`, this was already being used for resolution in typeck
- Avoid suggesting importing names with def-site hygiene, since it's often not useful
- Add more tests
r? `@petrochenkov`
Add LLVM CFI support to the Rust compiler
This PR adds LLVM Control Flow Integrity (CFI) support to the Rust compiler. It initially provides forward-edge control flow protection for Rust-compiled code only by aggregating function pointers in groups identified by their number of arguments.
Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by defining and using compatible type identifiers (see Type metadata in the design document in the tracking issue #89653).
LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e., -Clto).
Thank you, `@eddyb` and `@pcc,` for all the help!
This commit adds LLVM Control Flow Integrity (CFI) support to the Rust
compiler. It initially provides forward-edge control flow protection for
Rust-compiled code only by aggregating function pointers in groups
identified by their number of arguments.
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by defining and using compatible type identifiers
(see Type metadata in the design document in the tracking issue #89653).
LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e.,
-Clto).
Implement coherence checks for negative trait impls
The main purpose of this PR is to be able to [move Error trait to core](https://github.com/rust-lang/project-error-handling/issues/3).
This feature is necessary to handle the following from impl on box.
```rust
impl From<&str> for Box<dyn Error> { ... }
```
Without having negative traits affect coherence moving the error trait into `core` and moving that `From` impl to `alloc` will cause the from impl to no longer compiler because of a potential future incompatibility. The compiler indicates that `&str` _could_ introduce an `Error` impl in the future, and thus prevents the `From` impl in `alloc` that would cause overlap with `From<E: Error> for Box<dyn Error>`. Adding `impl !Error for &str {}` with the negative trait coherence feature will disable this error by encoding a stability guarantee that `&str` will never implement `Error`, making the `From` impl compile.
We would have this in `alloc`:
```rust
impl From<&str> for Box<dyn Error> {} // A
impl<E> From<E> for Box<dyn Error> where E: Error {} // B
```
and this in `core`:
```rust
trait Error {}
impl !Error for &str {}
```
r? `@nikomatsakis`
This PR was built on top of `@yaahc` PR #85764.
Language team proposal: to https://github.com/rust-lang/lang-team/issues/96
add feature flag for `type_changing_struct_update`
This implements the PR0 part of the mentoring notes within #86618.
overrides the previous inactive #86646 pr.
r? ```@nikomatsakis```
Suggest a case insensitive match name regardless of levenshtein distance
Fixes#86170
Currently, `find_best_match_for_name` only returns a case insensitive match name depending on a Levenshtein distance. It's a bit unfortunate that that hides some suggestions for typos like `Bar` -> `BAR`. That idea is from https://github.com/rust-lang/rust/pull/46347#discussion_r153701834, but I think it still makes some sense to show a candidate when we find a case insensitive match name as it's more like a typo.
Skipped the `candidate != lookup` check because the current (i.e, `levenshtein_match`) returns the exact same `Symbol` anyway but it doesn't seem to confuse anything on UI tests.
r? ``@estebank``
Add `const_eval_select` intrinsic
Adds an intrinsic that calls a given function when evaluated at compiler time, but generates a call to another function when called at runtime.
See https://github.com/rust-lang/const-eval/issues/7 for previous discussion.
r? `@oli-obk.`
Actually add the feature to the lints ui test
Add tracking issue to the feature declaration
Rename feature gate to non_exhaustive_omitted_patterns_lint
Add more omitted_patterns lint feature gate
By adding #![doc(cfg_hide(foobar))] to the crate attributes the cfg
#[cfg(foobar)] (and _only_ that _exact_ cfg) will not be implicitly
treated as a doc(cfg) to render a message in the documentation.
Add expansion to while desugar spans
In the same vein as #88163, this reverts a change in Clippy behavior as a result of #80357 (and reverts some `#[allow]`s): This changes `clippy::blocks_in_if_conditions` to not fire on `while` loops. Though we might actually want Clippy to lint those cases, we should introduce the change purposefully, with tests, and possibly under a different lint name.
The actual change here is to add a desugaring expansion to the spans when lowering a `while` loop.
r? `@Manishearth`
Avoid a couple of Symbol::as_str calls in cg_llvm
This should improve performance a tiny bit. Also remove `Symbol::len` and make `SymbolIndex` private.
Support `#[track_caller]` on closures and generators
## Lang team summary
This PR adds support for placing the `#[track_caller]` attribute on closure and generator expressions. This attribute's addition behaves identically (from a users perspective) to the attribute being placed on the method in impl Fn/FnOnce/FnMut for ... generated by compiler.
The attribute is currently "double" feature gated -- both `stmt_expr_attributes` (preexisting) and `closure_track_caller` (newly added) must be enabled in order to place these attributes on closures.
As the Fn* traits lack a `#[track_caller]` attribute in their definition, caller information does not propagate when invoking closures through dyn Fn*. There is no limitation that this PR adds in supporting this; it can be added in the future.
# Implementation details
This is implemented in the same way as for functions - an extra
location argument is appended to the end of the ABI. For closures,
this argument is *not* part of the 'tupled' argument storing the
parameters - the final closure argument for `#[track_caller]` closures
is no longer a tuple.
For direct (monomorphized) calls, the necessary support was already
implemented - we just needeed to adjust some assertions around checking
the ABI and argument count to take closures into account.
For calls through a trait object, more work was needed.
When creating a `ReifyShim`, we need to create a shim
for the trait method (e.g. `FnOnce::call_mut`) - unlike normal
functions, closures are never invoked directly, and always go through a
trait method.
Additional handling was needed for `InstanceDef::ClosureOnceShim`. In
order to pass location information throgh a direct (monomorphized) call
to `FnOnce::call_once` on an `FnMut` closure, we need to make
`ClosureOnceShim` aware of `#[tracked_caller]`. A new field
`track_caller` is added to `ClosureOnceShim` - this is used by
`InstanceDef::requires_caller` location, allowing codegen to
pass through the extra location argument.
Since `ClosureOnceShim.track_caller` is only used by codegen,
we end up generating two identical MIR shims - one for
`track_caller == true`, and one for `track_caller == false`. However,
these two shims are used by the entire crate (i.e. it's two shims total,
not two shims per unique closure), so this shouldn't a big deal.
This PR allows applying a `#[track_caller]` attribute to a
closure/generator expression. The attribute as interpreted as applying
to the compiler-generated implementation of the corresponding trait
method (`FnOnce::call_once`, `FnMut::call_mut`, `Fn::call`, or
`Generator::resume`).
This feature does not have its own feature gate - however, it requires
`#![feature(stmt_expr_attributes)]` in order to actually apply
an attribute to a closure or generator.
This is implemented in the same way as for functions - an extra
location argument is appended to the end of the ABI. For closures,
this argument is *not* part of the 'tupled' argument storing the
parameters - the final closure argument for `#[track_caller]` closures
is no longer a tuple.
For direct (monomorphized) calls, the necessary support was already
implemented - we just needeed to adjust some assertions around checking
the ABI and argument count to take closures into account.
For calls through a trait object, more work was needed.
When creating a `ReifyShim`, we need to create a shim
for the trait method (e.g. `FnOnce::call_mut`) - unlike normal
functions, closures are never invoked directly, and always go through a
trait method.
Additional handling was needed for `InstanceDef::ClosureOnceShim`. In
order to pass location information throgh a direct (monomorphized) call
to `FnOnce::call_once` on an `FnMut` closure, we need to make
`ClosureOnceShim` aware of `#[tracked_caller]`. A new field
`track_caller` is added to `ClosureOnceShim` - this is used by
`InstanceDef::requires_caller` location, allowing codegen to
pass through the extra location argument.
Since `ClosureOnceShim.track_caller` is only used by codegen,
we end up generating two identical MIR shims - one for
`track_caller == true`, and one for `track_caller == false`. However,
these two shims are used by the entire crate (i.e. it's two shims total,
not two shims per unique closure), so this shouldn't a big deal.
"Fix" an overflow in byte position math
r? `@estebank`
help! I fixed the ICE only to brick the diagnostic.
I mean, it was wrong previously (using an already expanded macro span), but it is really bad now XD
Implement `#[must_not_suspend]`
implements #83310
Some notes on the impl:
1. The code that searches for the attribute on the ADT is basically copied from the `must_use` lint. It's not shared, as the logic did diverge
2. The RFC does specify that the attribute can be placed on fn's (and fn-like objects), like `must_use`. I think this is a direct copy from the `must_use` reference definition. This implementation does NOT support this, as I felt that ADT's (+ `impl Trait` + `dyn Trait`) cover the usecase's people actually want on the RFC, and adding an imp for the fn call case would be significantly harder. The `must_use` impl can do a single check at fn call stmt time, but `must_not_suspend` would need to answer the question: "for some value X with type T, find any fn call that COULD have produced this value". That would require significant changes to `generator_interior.rs`, and I would need mentorship on that. `@eholk` and I are discussing it.
3. `@estebank` do you know a way I can make the user-provided `reason` note pop out? right now it seems quite hidden
Also, I am not sure if we should run perf on this
r? `@nikomatsakis`
This allows the format_args! macro to keep the pre-expansion code out of
the unsafe block without doing gymnastics with nested `match`
expressions. This reduces codegen.
Convert `debug_assert` to `assert` in `CachingSourceMapView`
I suspect that there's a bug somewhere in this code, which is
leading to the `predicates_of` ICE being seen in #89035
Move the Lock into symbol::Interner
This makes it easier to make the symbol interner (near) lock free in case of concurrent accesses in the future.
With https://github.com/rust-lang/rust/pull/87867 landed this shouldn't affect performance anymore.
Allow `panic!("{}", computed_str)` in const fn.
Special-case `panic!("{}", arg)` and translate it to `panic_display(&arg)`. `panic_display` will behave like `panic_any` in cosnt eval and behave like `panic!(format_args!("{}", arg))` in runtime.
This should bring Rust 2015 and 2021 to feature parity in terms of `const_panic`; and hopefully would unblock the stabilisation of #51999.
`@rustbot` modify labels: +T-compiler +T-libs +A-const-eval +A-const-fn
r? `@oli-obk`
Introduce a fast path that avoids the `debug_tuple` abstraction when deriving Debug for unit-like enum variants.
The intent here is to allow LLVM to remove the switch entirely in favor of an
indexed load from a table of constant strings, which is likely what the
programmer would write in C. Unfortunately, LLVM currently doesn't perform this
optimization due to a bug, but there is [a
patch](https://reviews.llvm.org/D109565) that fixes this issue. I've verified
that, with that patch applied on top of this commit, Debug for unit-like tuple
variants becomes a load, reducing the O(n) code bloat to O(1).
Note that inlining `DebugTuple::finish()` wasn't enough to allow LLVM to
optimize the code properly; I had to avoid the abstraction entirely. Not using
the abstraction is likely better for compile time anyway.
Part of #88793.
r? `@oli-obk`
cleanup(rustc_trait_selection): remove vestigial code from rustc_on_unimplemented
This isn't allowed by the validator, and seems to be unused.
When it was added in ed10a3faae,
it was used on `Sized`, and that usage is gone.
Revert anon union parsing
Revert PR #84571 and #85515, which implemented anonymous union parsing in a manner that broke the context-sensitivity for the `union` keyword and thus broke stable Rust code.
Fix#88583.
Using symbol::Interner makes it very easy to mixup UniqueTypeId symbols
with the global interner. In fact the Debug implementation of
UniqueTypeId did exactly this.
Using a separate interner type also avoids prefilling the interner with
unused symbols and allow for optimizing the symbol interner for parallel
access without negatively affecting the single threaded module codegen.
Encode spans relative to the enclosing item
The aim of this PR is to avoid recomputing queries when code is moved without modification.
MCP at https://github.com/rust-lang/compiler-team/issues/443
This is achieved by :
1. storing the HIR owner LocalDefId information inside the span;
2. encoding and decoding spans relative to the enclosing item in the incremental on-disk cache;
3. marking a dependency to the `source_span(LocalDefId)` query when we translate a span from the short (`Span`) representation to its explicit (`SpanData`) representation.
Since all client code uses `Span`, step 3 ensures that all manipulations
of span byte positions actually create the dependency edge between
the caller and the `source_span(LocalDefId)`.
This query return the actual absolute span of the parent item.
As a consequence, any source code motion that changes the absolute byte position of a node will either:
- modify the distance to the parent's beginning, so change the relative span's hash;
- dirty `source_span`, and trigger the incremental recomputation of all code that
depends on the span's absolute byte position.
With this scheme, I believe the dependency tracking to be accurate.
For the moment, the spans are marked during lowering.
I'd rather do this during def-collection,
but the AST MutVisitor is not practical enough just yet.
The only difference is that we attach macro-expanded spans
to their expansion point instead of the macro itself.
Debug for unit-like enum variants.
The intent here is to allow LLVM to remove the switch entirely in favor of an
indexed load from a table of constant strings, which is likely what the
programmer would write in C. Unfortunately, LLVM currently doesn't perform this
optimization due to a bug, but there is [a
patch](https://reviews.llvm.org/D109565) that fixes this issue. I've verified
that, with that patch applied on top of this commit, Debug for unit-like tuple
variants becomes a load, reducing the O(n) code bloat to O(1).
Note that inlining `DebugTuple::finish()` wasn't enough to allow LLVM to
optimize the code properly; I had to avoid the abstraction entirely. Not using
the abstraction is likely better for compile time anyway.
Part of #88793.
This reverts commit 059b68dd67.
Note that this was manually adjusted to retain some of the refactoring
introduced by commit 059b68dd67, so that it could
likewise retain the correction introduced in commit
5b4bc05fa5